In silico analysis of intestinal microbial instability and symptomatic markers in mice during the acute phase of severe burns

Author:

Hou Bochen,Zhang Honglan,Zhou Lina,Hu Biao,Tang Wenyi,Ye Bo,Wang Cui,Xu Yongmei,Zou Lingyun,Hu Jun

Abstract

Abstract Background Severe burns may alter the stability of the intestinal flora and affect the patient’s recovery process. Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers. Methods We established mouse models of partial thickness deep III degree burns and collected faecal samples for 16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent bioinformatic analysis. Results We analysed the sequencing results using alpha diversity, beta diversity and machine learning methods. At both time points, 4 and 6 h after burning, the Firmicutes phylum content decreased and the content of the Bacteroidetes phylum content increased, showing a significant decrease in the Firmicutes/Bacteroidetes ratio compared to the control group. Nine bacterial genera changed significantly during the acute phase and occupied the top six positions in the Random Forest significance ranking. Clustering results also clearly showed that there was a clear boundary between the communities of burned and control mice. Functional analyses showed that during the acute phase of burn, gut bacteria increased lipoic acid metabolism, seleno-compound metabolism, TCA cycling, and carbon fixation, while decreasing galactose metabolism and triglyceride metabolism. Based on the abundance characteristics of the six significantly different bacterial genera, both the XGboost and Random Forest models were able to discriminate between the burn and control groups with 100% accuracy, while both the Random Forest and Support Vector Machine models were able to classify samples from the 4-hour and 6-hour burn groups with 86.7% accuracy. Conclusions Our study shows an increase in gut microbiota diversity in the acute phase of deep burn injury, rather than a decrease as is commonly believed. Severe burns result in a severe imbalance of the gut flora, with a decrease in probiotics and an increase in microorganisms that trigger inflammation and cognitive deficits, and multiple pathways of metabolism and substance synthesis are affected. Simple machine learning model testing suggests several bacterial genera as potential biomarkers of severe burn phenotypes.

Funder

Chongqing Natural Science Foundation

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Chongqing Medical Scientific Research Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3