Author:
Gélvez Ana Patricia Cacua,Diniz Junior José Antonio Picanço,Brígida Rebecca Thereza Silva Santa,Rodrigues Ana Paula Drummond
Abstract
Abstract
Background
Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle–polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro.
Results
Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment.
Conclusions
Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference65 articles.
1. Organización Panamericana de la Salud (OPAS). Manual de procedimientos para la vigilancia y control de las leishmaniasis en las Américas. Washington, D.C.: OPS; 2019.
2. World Health Organization (WHO). Leishmaniasis. Guide of the WHO/PAHO Expert Committee on the Control of Leishmaniases. Epidemiological Report of the Americas Nº 7. Washington, D.C: World Health Organization; 2019. https://iris.paho.org/bitstream/handle/10665.2/50505/Leishreport2019_eng.pdf?ua=1
3. Palumbo E. Treatment strategies for mucocutaneous leishmaniasis. J Global Infect Dis. 2010;2(2): https://doi.org/10.4103/0974-777x.62879.
4. Mcgwire BS, Satoskar AR, Leishmaniasis. Clinical syndromes and treatment. QJM. 2014;107(1):7–14.
5. Anversa LS, Tiburcio MG, Richini-Pereira VB, Ramirez LE. Human leishmaniasis in Brazil: a general review. Rev Assoc Med Bras. 2018;64(3):281–9.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献