Identification of disease-related genes in Plasmodium berghei by network module analysis

Author:

Lin Junhao,Zeng Shan,Chen Qiong,Liu Guanghui,Pan Suyue,Liu Xuewu

Abstract

Abstract Background Plasmodium berghei has been used as a preferred model for studying human malaria, but only a limited number of disease-associated genes of P. berghei have been reported to date. Identification of new disease-related genes as many as possible will provide a landscape for better understanding the pathogenesis of P. berghei. Methods Network module analysis method was developed and applied to identify disease-related genes in P. berghei genome. Sequence feature identification, gene ontology annotation, and T-cell epitope analysis were performed on these genes to illustrate their functions in the pathogenesis of P. berghei. Results 33,314 genes were classified into 4,693 clusters. 4,127 genes shared by six malaria parasites were identified and are involved in many aspects of biological processes. Most of the known essential genes belong to shared genes. A total of 63 clusters consisting of 405 P. berghei genes were enriched in rodent malaria parasites. These genes participate in various stages of parasites such as liver stage development and immune evasion. Combination of these genes might be responsible for P. berghei infecting mice. Comparing with P. chabaudi, none of the clusters were specific to P. berghei. P. berghei lacks some proteins belonging to P. chabaudi and possesses some specific T-cell epitopes binding by class-I MHC, which might together contribute to the occurrence of experimental cerebral malaria (ECM). Conclusions We successfully identified disease-associated P. berghei genes by network module analysis. These results will deepen understanding of the pathogenesis of P. berghei and provide candidate parasite genes for further ECM investigation.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3