Effect of cultivation mode on bacterial and fungal communities of Dendrobium catenatum

Author:

Zhu Mingmin,Chen Huihui,Si Jinping,Wu Lingshang

Abstract

Abstract Background The orchid growth and development often associate with microbes. However, the interaction between plant performance and microbial communities within and surrounding plants is less understood. Dendrobium catenatum, which used to be an endangered orchid species, has become a billion dollar industry in China. Simulated natural cultivation modes, such as living tree epiphytic (LT) and cliff epiphytic (CE) cultivations, improve the production or quality of D. catenatum and contribute to the development of D. catenatum industry. In a previous study, morphological characteristics, anatomical structure, and main bioactive components (polysaccharides and ethanol-soluble extractives) of D. catenatum grown under LT and CE significantly differed from a facility cultivation mode, pot (PO) cultivation, were observed. Whether cultivation mode affects bacterial and fungal communities of D. catenatum, thereby affecting the chemical quality of this plant, need to be explored. Results Both three plant organs (leaf, stem, and root) and cultivating substrates obtained under three cultivation modes: living tree epiphytic (LT), cliff epiphytic (CE), and pot (PO) cultivation were examined by adopting high-throughput sequencing methods. Subsequently, bacterial and fungal correlations with D. catenatum main chemical components, stem polysaccharides and ethanol-soluble extractives and leaf phenols and flavonoids, were elucidated. The results showed that microbial communities of the plants and substrates are both influenced by the cultivation mode. However, the plants and their cultivating substrates exhibited different patterns of bacterial and fungal composition, with clearly distinguished dominant bacterial groups, but shared dominance among fungal groups. Bacteria and fungi differed in abundance, diversity, and community structure, depending on the cultivation environment and plant organ. Both bacterial and fungal communities were affected by cultivation mode and plant organ. In both plants and substrates, PO bacterial and fungal community structure differed significantly from those of LT and CE modes. Bacterial and fungal community structure differed significantly between roots and the other two plant organs examined (stems and leaves). Several bacteria and fungi were positively correlated with main chemical components in D. catenatum. Conclusions The findings indicate that microbial communities of the plants and substrates were both influenced by the cultivation mode and plant organ, and some of them were positively correlated with main chemical components in D. catenatum. The research would enhance our understanding of interactions between Dendrobium and the microbial environment, and to provide a theoretical basis for the development of improved D. catenatum cultivation methods.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3