Human liver microbiota modeling strategy at the early onset of fibrosis
-
Published:2023-01-30
Issue:1
Volume:23
Page:
-
ISSN:1471-2180
-
Container-title:BMC Microbiology
-
language:en
-
Short-container-title:BMC Microbiol
Author:
Champion Camille,Neagoe Radu M.,Effernberger Maria,Sala Daniela T.,Servant Florence,Christensen Jeffrey E.,Arnoriaga-Rodriguez Maria,Amar Jacques,Lelouvier Benjamin,Loubieres Pascale,Azalbert Vincent,Minty Matthieu,Thomas Charlotte,Blasco-Baque Vincent,Gamboa Fabrice,Tilg Herbert,Cardellini Marina,Federici Massimo,Fernández-Real Jose-Manuel,Loubes Jean Michel,Burcelin Rémy
Abstract
Abstract
Background
Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences.
Results
Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0.
Conclusions
Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses.
Trial registration
TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.
Funder
Institut National des Sciences Appliquées and the Région Occitanie VAIOMER SAS Centre for Promoting Vascular Health in the Ageing Community COMET program - Competence Centers for Excellent Technologies Austrian Ministry for Transport, Innovation and Technology Austrian Ministry for Digital and Economic Affairs and the federal states Tyrol, Salzburg and Vienna Agence Nationale de la Recherche Région Midi Pyrénées Novo-Nordisk and Sanofi-Aventis Fondation Francaise de Recherche en Diabetologie
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference57 articles.
1. Dim G, Pastore M, Marra F. Liver fibrosis in the context of nonalcoholic steatohepatitis: the role of adipokines. Minerva Gastroenterol Dietol. 2018;64(1):39–50. https://doi.org/10.23736/s1121-421x.17.02427-8. 2. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263–73. https://doi.org/10.1001/jama.2015.5370. 3. Brandl K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2017;33(3):128–33. https://doi.org/10.1097/MOG.0000000000000349. 4. Hoyles L, Fernandez-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, Chilloux J, Myridakis A, Martinez-Gili L, Moreno-Navarrete JM, Benhamed F, Azalbert V, Blasco-Baque V, Puig J, Xifra G, Ricart W, Tomlinson C, Woodbridge M, Cardellini M, Davato F, Cardolini I, Porzio O, Gentileschi P, Lopez F, Foufelle F, Butcher SA, Holmes E, Nicholson JK, Postic C, Burcelin R, Dumas ME. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–80. https://doi.org/10.1038/s41591-018-0061-3. 5. Denou E, Lolmede K, Garidou L, Pomie C, Chabo C, Lau TC, Fullerton MD, Nigro G, Zakaroff-Girard A, Luche E, Garret C, Serino M, Amar J, Courtney M, Cavallari JF, Henriksbo BD, Barra NG, Foley KP, McPhee JB, Duggan BM, O’Neill HM, Lee AJ, Sansonetti P, Ashkar AA, Khan WI, Surette MG, Bouloumie A, Steinberg GR, Burcelin R, Schertzer JD. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med. 2015;7(3):259–74. https://doi.org/10.15252/emmm.201404169.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|