Composition, structure, and functional shifts of prokaryotic communities in response to co-composting of various nitrogenous green feedstocks

Author:

Matheri Felix,Kambura Anne Kelly,Mwangi Maina,Ongeso Nehemiah,Karanja Edward,Adamtey Noah,Mwangi Elias Kihara,Mwangi Edwin,Tanga Chrysantus,Musyoka Martha Wangu,Runo Steven

Abstract

Abstract Background Thermophilic composting is a promising method of sanitizing pathogens in manure and a source of agriculturally important thermostable enzymes and microorganisms from organic wastes. Despite the extensive studies on compost prokaryotes, shifts in microbial profiles under the influence of various green materials and composting days are still not well understood, considering the complexity of the green material sources. Here, the effect of regimens of green composting material on the diversity, abundance, and metabolic capacity of prokaryotic communities in a thermophilic compost environment was examined. Methods Total community 16S rRNA was recovered from triplicate compost samples of Lantana-based, Tithonia-based, Grass-based, and mixed (Lantana + Tithonia + Grass)- based at 21, 42, 63, and 84 days of composting. The 16S rRNA was sequenced using the Illumina Miseq platform. Bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 (DADA2) R version 4.1 and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2) pipelines for community structure and metabolic profiles, respectively. In DADA2, prokaryotic classification was done using the Refseq-ribosomal database project (RDP) and SILVA version 138 databases. Results Our results showed apparent differences in prokaryotic community structure for total diversity and abundance within the four compost regimens and composting days. The study showed that the most prevalent phyla during composting included Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, and Proteobacteria. Additionally, there were differences in the overall diversity of metabolic pathways but no significant differences among the various compost treatments on major metabolic pathways like carbohydrate biosynthesis, carbohydrate degradation, and nitrogen biosynthesis. Conclusion Various sources of green material affect the succession of compost nutrients and prokaryotic communities. The similarity of amounts of nutrients, such as total Nitrogen, at the end of the composting process, despite differences in feedstock material, indicates a significant influence of composting days on the stability of nutrients during composting.

Funder

Deutscher Akademischer Austauschdienst

Direktion für Entwicklung und Zusammenarbeit

Kenyatta University

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3