Growth of fungi and yeasts in food production waste streams: a feasibility study

Author:

Bansfield D.,Spilling K.,Mikola A.,Piiparinen J.

Abstract

AbstractFood production produces nutrient-rich waste streams which, depending on local legislation, are either sent to wastewater treatment plants or discharged into the environment. In addition to causing environmental harm in the second instance, valuable nutrients are lost. A more circular approach would be to reuse these waste streams. Fungi and yeasts are ideal candidates as they require lots of organic carbon (which is especially high in food production waste streams) for growth, with the potential for producing value-added biomass. Here, we tested the metabolic activity and possible growth of seven fungi and three yeasts in five different food production waste streams. Initial tests were done to find the most promising waste streams for growth and these were chosen for further study. All species were then cultured in these waste streams and oxygen uptake was measured to gauge metabolic activity which we used as a proxy for growth rate. Pelletization’s effect on metabolic rates was tested on the most pellet-forming species, by adding agar to inhibit pellet formation. The most promising waste stream for yeast/fungal growth was cheese whey (Whey). Pellet inhibition (i.e., filamentous growth) resulted in increased metabolic activity of cells in the confectionary bakery waste stream with agar but decreased metabolic activity in Whey with agar. The best-growing species, Geotrichum candidum, has potential commercial value as a producer of enzymes, biochemicals and lipids and could provide added value while improving the circularity of water and nutrients in food production.

Funder

Maa- ja Vesitekniikan Tuki Ry

The Finnish Foundation for Technology Promotion

Finnish Environment Institute, Finland

Aalto-Yliopisto

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3