Bifidobacterium mongoliense genome seems particularly adapted to milk oligosaccharide digestion leading to production of antivirulent metabolites

Author:

Bondue Pauline,Milani Christian,Arnould Emilie,Ventura Marco,Daube Georges,LaPointe Gisèle,Delcenserie VéroniqueORCID

Abstract

Abstract Background Human milk oligosaccharides (HMO) could promote the growth of bifidobacteria, improving young children’s health. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulent activity against intestinal pathogens. Bovine milk oligosaccharides (BMO), structurally similar to HMO, are found at high concentration in cow whey. This is particularly observed for 3′-sialyllactose (3′SL). This study focused on enzymes and transport systems involved in HMO/BMO metabolism contained in B. crudilactis and B. mongoliense genomes, two species from bovine milk origin. The ability of B. mongoliense to grow in media supplemented with whey or 3′SL was assessed. Next, the effects of cell-free spent media (CFSM) were tested against the virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Results Due to the presence of genes encoding β-galactosidases, β-hexosaminidases, α-sialidases and α-fucosidases, B. mongoliense presents a genome more sophisticated and more adapted to the digestion of BMO/HMO than B. crudilactis (which contains only β-galactosidases). In addition, HMO/BMO digestion involves genes encoding oligosaccharide transport systems found in B. mongoliense but not in B. crudilactis. B. mongoliense seemed able to grow on media supplemented with whey or 3′SL as main source of carbon (8.3 ± 1.0 and 6.7 ± 0.3 log cfu/mL, respectively). CFSM obtained from whey resulted in a significant under-expression of ler, fliC, luxS, stx1 and qseA genes (− 2.2, − 5.3, − 2.4, − 2.5 and − 4.8, respectively; P < 0.05) of E. coli O157:H7. CFSM from 3′SL resulted in a significant up-regulation of luxS (2.0; P < 0.05) gene and a down-regulation of fliC (− 5.0; P < 0.05) gene. CFSM obtained from whey resulted in significant up-regulations of sopD and hil genes (2.9 and 3.5, respectively; P < 0.05) of S. Typhimurium, while CFSM obtained from 3′SL fermentation down-regulated hil and sopD genes (− 2.7 and − 4.2, respectively; P < 0.05). Conclusion From enzymes and transporters highlighted in the genome of B. mongoliense and its potential ability to metabolise 3′SL and whey, B. mongoliense seems well able to digest HMO/BMO. The exact nature of the metabolites contained in CFSM has to be identified still. These results suggest that BMO associated with B. mongoliense could be an interesting synbiotic formulation to maintain or restore intestinal health of young children.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3