Author:
Walas Nikolina,Slown Samuel,Amato Heather K.,Lloyd Tyler,Bender Monica,Varghese Vici,Pandori Mark,Graham Jay P.
Abstract
Abstract
Background
Antimicrobial resistant infections continue to be a leading global public health crisis. Mobile genetic elements, such as plasmids, have been shown to play a major role in the dissemination of antimicrobial resistance (AMR) genes. Despite its ongoing threat to human health, surveillance of AMR in the United States is often limited to phenotypic resistance. Genomic analyses are important to better understand the underlying resistance mechanisms, assess risk, and implement appropriate prevention strategies. This study aimed to investigate the extent of plasmid mediated antimicrobial resistance that can be inferred from short read sequences of carbapenem resistant E. coli (CR-Ec) in Alameda County, California. E. coli isolates from healthcare locations in Alameda County were sequenced using an Illumina MiSeq and assembled with Unicycler. Genomes were categorized according to predefined multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) schemes. Resistance genes were identified and corresponding contigs were predicted to be plasmid-borne or chromosome-borne using two bioinformatic tools (MOB-suite and mlplasmids).
Results
Among 82 of CR-Ec identified between 2017 and 2019, twenty-five sequence types (STs) were detected. ST131 was the most prominent (n = 17) followed closely by ST405 (n = 12). blaCTX−M were the most common ESBL genes and just over half (18/30) of these genes were predicted to be plasmid-borne by both MOB-suite and mlplasmids. Three genetically related groups of E. coli isolates were identified with cgMLST. One of the groups contained an isolate with a chromosome-borne blaCTX−M−15 gene and an isolate with a plasmid-borne blaCTX−M−15 gene.
Conclusions
This study provides insights into the dominant clonal groups driving carbapenem resistant E. coli infections in Alameda County, CA, USA clinical sites and highlights the relevance of whole-genome sequencing in routine local genomic surveillance. The finding of multi-drug resistant plasmids harboring high-risk resistance genes is of concern as it indicates a risk of dissemination to previously susceptible clonal groups, potentially complicating clinical and public health intervention.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference65 articles.
1. Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022 Mar;170:106103.
2. Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2019 [Internet]. Centers for Disease Control and Prevention (U.S.); 2019 Nov [cited 2022 Dec 30]. Available from: https://stacks.cdc.gov/view/cdc/82532.
3. Annunziato. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int J Mol Sci. 2019 Nov 21;20(23):5844.
4. Paterson DL, Bonomo RA. Extended-spectrum β-Lactamases: a clinical update. Clin Microbiol Rev 2005 Oct;18(4):657–86.
5. Ahmad Hamad P, Khadija KM. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolates from Thalassemia in Erbil, Iraq. Mediterr J Hematol Infect Dis 2019 Jun 25;11(1):e2019041.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献