Media component bovine serum albumin facilitates the formation of mycobacterial biofilms in response to reductive stress

Author:

Mavi Parminder Singh,Singh Shweta,Kumar Ashwani

Abstract

Abstract Background Mycobacterium tuberculosis (Mtb) forms physiologically relevant biofilms harboring drug-tolerant bacteria. This observation has brought the study of mycobacterial biofilms to the forefront of tuberculosis research. We established earlier that dithiothreitol (DTT) mediated reductive stress induces cellulose-rich biofilm formation in Mtb cultures. The molecular events associated with the DTT-induced biofilm formation are not known. Furthermore, there are only limited tools for monitoring the presence of cellulose in biofilms. Results To decipher the molecular events associated with DTT-induced biofilm formation, we used Mtb and non-pathogenic, fast-growing Mycobacterium smegmatis (Msm). We observed that DTT induces biofilm formation in Msm cultures. We explored whether media components facilitate biofilm formation in mycobacteria upon exposure to DTT. We observed that media component bovine serum albumin promotes mycobacterial biofilm formation in response to DTT. Furthermore, we analyzed the composition of extracellular polymeric substances of Msm biofilms. We found that, like Mtb biofilms, Msm biofilms are also rich in polysaccharides and proteins. We also developed a novel protein-based molecular probe for imaging cellulose by utilizing the cellulose-binding domain of cellulase CenA from Cellulomonas fimi and fusing it to fluorescent reporter mCherry. Characterization of this new probe revealed that it has a high affinity for cellulose and could be used for visualizing cellulose biosynthesis during the development of Agrobacterium biofilms. Furthermore, we have demonstrated that biological macromolecule cellulose is present in the extracellular polymeric substances of Msm biofilms using this novel probe. Conclusions This study indicates that DTT-mediated reduction of media component BSA leads to the formation of nucleating foci. These nucleating foci are critical for subsequent attachment of bacterial cells and induction of EPS production. Furthermore, this new tool, IMT-CBD-mC, could be used for monitoring cellulose incorporation in plant cells, understanding cellulose biosynthesis dynamics during biofilm formation, etc.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3