Author:
Sichewo Petronillah R.,Hlokwe Tiny M.,Etter Eric M. C.,Michel Anita L.
Abstract
Abstract
Background
Bovine tuberculosis (bTB) affects cattle and wildlife in South Africa with the African buffalo (Syncerus caffer) as the principal maintenance host. The presence of a wildlife maintenance host at the wildlife/livestock interface acting as spill-over host makes it much more challenging to control and eradicate bTB in cattle. Spoligotyping and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) genotyping methods were performed to investigate the genetic diversity of Mycobacterium bovis (M. bovis) isolates from cattle and wildlife, their distribution and transmission at the wildlife/livestock interface in northern Kwa-Zulu Natal (KZN), South Africa.
Results
SB0130 was identified as the dominant spoligotype pattern at this wildlife/livestock interface, while VNTR typing revealed a total of 29 VNTR profiles (strains) in the KZN province signifying high genetic variability. The detection of 5 VNTR profiles shared between cattle and buffalo suggests M. bovis transmission between species. MIRU-VNTR confirmed co-infection in one cow with three strains of M. bovis that differed at a single locus, with 2 being shared with buffalo, implying pathogen introduction from most probably unrelated wildlife sources.
Conclusion
Our findings highlight inter and intra species transmission of bTB at the wildlife/livestock interface and the need for the implementation of adequate bTB control measures to mitigate the spread of the pathogen responsible for economic losses and a public health threat.
Funder
National Research Foundation-South Africa
Institute of Tropical Medicine-Belgium
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference47 articles.
1. Michel AL, Müller B, van Helden PD. Mycobacterium bovis at the animal-human interface: a problem, or not? Vet Microbiol. 2010;140(3–4):371–81.
2. Caron A, , de Garine-Wichatitsky M And RF. Bovine tuberculosis: a double-edged issue at the human/livestock/wildlife interface in Africa. Empres -animal health 2014;44(2):10–13.
3. Machado A, Santos N, Zinsstag J, Correia-neves M. Prevalence of Bovine Tuberculosis and Risk Factor Assessment in Cattle in Rural Livestock Areas of Govuro District in the Southeast of Mozambique. PLoS One. 2014;9(3):e91527.
4. Munyeme M, Muma JB, Samui KL, Skjerve E, Nambota AM, Phiri IGK, et al. Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/wildlife interface areas of Zambia. Trop Anim Health Prod. 2009;41(3):345–52.
5. Thoen CO, Lobue PA, Enarson DA, Kaneene JB, de Kantor IN. Tuberculosis : a re - emerging disease in animals and humans. Vet Ital. 2009;45(1):135–81.