Glycogen availability and pH variation in a medium simulating vaginal fluid influence the growth of vaginal Lactobacillus species and Gardnerella vaginalis

Author:

Navarro Stephany,Abla Habib,Delgado Betsaida,Colmer-Hamood Jane A.,Ventolini Gary,Hamood Abdul N.

Abstract

Abstract Background Glycogen metabolism by Lactobacillus spp. that dominate the healthy vaginal microbiome contributes to a low vaginal pH (3.5–4.5). During bacterial vaginosis (BV), strict and facultative anaerobes including Gardnerella vaginalis become predominant, leading to an increase in the vaginal pH (> 4.5). BV enhances the risk of obstetrical complications, acquisition of sexually transmitted infections, and cervical cancer. Factors critical for the maintenance of the healthy vaginal microbiome or the transition to the BV microbiome are not well defined. Vaginal pH may affect glycogen metabolism by the vaginal microflora, thus influencing the shift in the vaginal microbiome. Results The medium simulating vaginal fluid (MSVF) supported growth of L. jensenii 62G, L. gasseri 63 AM, and L. crispatus JV-V01, and G. vaginalis JCP8151A at specific initial pH conditions for 30 d. L. jensenii at all three starting pH levels (pH 4.0, 4.5, and 5.0), G. vaginalis at pH 4.5 and 5.0, and L. gasseri at pH 5.0 exhibited the long-term stationary phase when grown in MSVF. L. gasseri at pH 4.5 and L. crispatus at pH 5.0 displayed an extended lag phase over 30 d suggesting inefficient glycogen metabolism. Glycogen was essential for the growth of L. jensenii, L. crispatus, and G. vaginalis; only L. gasseri was able to survive in MSVF without glycogen, and only at pH 5.0, where it used glucose. All four species were able to survive for 15 d in MSVF with half the glycogen content but only at specific starting pH levels – pH 4.5 and 5.0 for L. jensenii, L. gasseri, and G. vaginalis and pH 5.0 for L. crispatus. Conclusions These results suggest that variations in the vaginal pH critically influence the colonization of the vaginal tract by lactobacilli and G. vaginalis JCP8151A by affecting their ability to metabolize glycogen. Further, we found that L. jensenii 62G is capable of glycogen metabolism over a broader pH range (4.0–5.0) while L. crispatus JV-V01 glycogen utilization is pH sensitive (only functional at pH 5.0). Finally, our results showed that G. vaginalis JCP8151A can colonize the vaginal tract for an extended period as long as the pH remains at 4.5 or above.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3