Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize

Author:

Rashad Younes M.,Abdalla Sara A.,Shehata Ahmed S.

Abstract

AbstractFusarium root rot, caused by Fusarium solani (Mart.) Sacc., represents one of the most damaging diseases of maize affecting plant growth and yield. In this study, the antagonistic potential of a non-aflatoxigenic endophytic Aspergillus flavus YRB2, isolated from Thymelaea hirsuta (L.) Endl., was tested against F. solani in vitro. In addition, its biocontrol activity against Fusarium root rot of maize was evaluated under greenhouse conditions. Its impacts on plant molecular, pathological, physiological, and growth levels were also studied. Results obtained revealed a potent antagonistic behavior for A. flavus YRB2 against F. solani in vitro, recording 80% growth inhibition. Seventeen secondary metabolites were detected in the n-hexane extract of A. flavus YRB2 filtered culture broth using GC-MS analysis. Among them, various antifungal secondary metabolites were produced, namely palmitic acid, α-linolenic acid, stearic acid, 2, 4-di-tert-butylphenol, diisobutyl phthalate, and heneicosane. In contrast, HPLC analysis showed that no aflatoxins (B1, B2, G1, and G2) were detected. Under greenhouse conditions, colonization of maize plants with A. flavus YRB2 exhibited a potential biocontrol activity against Fusarium root rot, recording 73.4% reduction in the disease severity. Triggering of transcriptional expression level of the defense-related genes JERF3 (7.2-fold), CHI II (8-fold), and POD (9.1-fold) was reported, indicating the inducing effect on the plant immunity. In addition, an increment in the antioxidant enzymes POD and PPO, and the total phenolic content in maize roots was also observed in response to this treatment. Moreover, a growth-promoting effect was also observed for colonization of maize plants with A. flavus YRB2. Based on the obtained data, we can conclude that A. flavus YRB2 may represent a promising biocontrol and growth-promoting agent for maize plants against Fusarium root rot. Nevertheless, field evaluation is highly requested before the use recommendation.

Funder

City of Scientific Research and Technological Applications

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference60 articles.

1. FAOSTAT (2022). Food and agriculture organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC.

2. Ranum P, Peña-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption. Ann N Y Acad Sci. 2014;1312:105–12. https://doi.org/10.1111/nyas.12396.

3. Rausch KD, Hummel D, Johnson LA, May JB. Wet milling: the basis for corn biorefineries. In: Serna-Saldivar SOBT-C, editor. Corn: chemistry and technology. 3rd ed. Oxford: AACC International Press; 2018. p. 501–35. ISBN 9780128119716.

4. Nyvall RF. Diseases of corn. In: Nyvall RF, editor. Field crop diseases handbook. Boston: Springer US; 1989. p. 91–169. ISBN 978-1-4757-5221-2.

5. Okello PN, Petrović K, Kontz B, Mathew FM. Eight species of Fusarium cause root rot of corn (Zea mays) in South Dakota. Plant Health Prog. 2019;20:38–43. https://doi.org/10.1094/PHP-11-18-0075-RS.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3