The rhizosphere Microbiome of Malus sieversii (Ldb.) Roem. in the geographic and environmental gradients of China's Xinjiang

Author:

Jiao Huiying,Liu Liqiang,Wang Ruizhe,Qin Wei,Zhang Bo

Abstract

AbstractMalus sieversii (Ldb.) Roem. is the original species of modern cultivated apple and a key national essential conservation plant in China. In recent years, degradation and death of wild apple has been exacerbated by imbalances in the rhizosphere micro-ecosystems of wild apple forests due to soil nutrient loss, grazing, climate change and pest and disease outbreaks. However, the structure, diversity and response to environmental factors of wild apple rhizosphere microbial communities are so far unclear. In this study, the rhizosphere bacterial and eukaryotic communities of M. sieversii (Ldb.) Roem. in eight regions of the Yili River were analyzed using 16S/18S rDNA high-throughput sequencing technology. The results indicated that the bacterial operational taxonomic units (OTUs), Shannon index, and community composition were significantly lower in regions A, E, and F than in other regions. By contrast, the dominant eukaryotic communities in all regions were relatively similar in composition and differed less than the relative abundance of bacterial communities. Geographical and climatic distance were found to be key factors influencing the composition and diversity of wild apple rhizosphere microbial communities through mantel analysis. Moreover, these factors above were more correlated with bacterial diversity than with eukaryotes. This study identified the structure of wild apple rhizosphere microbial communities in Xinjiang and their interaction mechanisms under geographical and environmental gradients. It provides guidance for the sustainable management and ecological construction of wild apple forests in China.

Funder

National Natural Science Foundation of China

National key research and development plan of China

Funding project for Key disciplines of Xinjiang Horticulture of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3