Abstract
Abstract
Background
The possibility that smokeless tobacco may contribute to oral carcinogenesis by influencing the oral microbiome has not been explored. This preliminary cross-sectional study sought to assess the effect of using shammah, a form of smokeless tobacco prevalent in Arabia, on the tongue microbiome. Tongue scarping samples were obtained from 29 shammah users (SU; 27.34 ± 6.9 years) and 23 shammah non-users (SNU; 27.7 ± 7.19 years) and analyzed with 16S rRNA gene sequencing (V1-V3). Species-level taxonomy assignment of the high-quality, merged reads was obtained using a previously described BLASTn-based algorithm. Downstream analyses were performed with QIIME, LEfSe, and R.
Results
A total of 178 species, belonging to 62 genera and 8 phyla were identified. Genera Streptococcus, Leptotrichia, Actinomyces, Veillonella, Haemophilus, Prevotella and Neisseria accounted for more than 60% of the average microbiome. There were no differences between the two groups in species richness and alpha-diversity, but PCoA showed significant separation (P = 0.015, ANOSIM). LEfSe analysis identified 22 species to be differentially abundant between the SU and SNU. However, only 7 species maintained a false discovery rate of ≤0.2 and could cluster the two groups separately: Rothia mucilaginosa, Streptococcus sp. oral taxon 66, Actinomyces meyeri, Streptococcus vestibularis Streptococcus sanguinis and a potentially novel Veillonella species in association with SU, and Oribacterium asaccharolyticum with SNU.
Conclusion
These preliminary results indicate that shammah use induces tongue microbiome changes including enrichment of several species with high acetaldehyde production potential, which warrants further investigation.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference41 articles.
1. World Health Organization. WHO report on the global tobacco epidemic: Offer help to quit tobacco use, vol. 2019. Geneva: World Health Organization. Available from: https://www.who.int/tobacco/global_report/en//; 2019.
2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer. Smokeless tobacco and some tobacco-specific N-nitrosamines. In: A review of human carcinogens: Personal habits and indoor combustions, Volume 100 E, vol. E100. Lyon: World Health Organization; distributed by WHO Press; 2012. p. 267–321.
3. Petti S, Masood M, Scully C. The magnitude of tobacco smoking-betel quid chewing-alcohol drinking interaction effect on oral cancer in South-East Asia. A meta-analysis of observational studies. PLoS One. 2013;8(11):e78999.
4. Khan Z, Tonnies J, Muller S. Smokeless tobacco and oral cancer in South Asia: a systematic review with meta-analysis. J Cancer Epidemiol. 2014;2014:394696.
5. Tomar SL, Hecht SS, Jaspers I, Gregory RL, Stepanov I. Oral health effects of combusted and smokeless tobacco products. Adv Dent Res. 2019;30(1):4–10.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献