Biological and proteomic analysis of a new isolate of the nematophagous fungus lecanicillium sp

Author:

Hajji-Hedfi Lobna,Hlaoua Wassila,Rhouma Abdelhak,Al-Judaibi Awatif A.,Arcos Susana Cobacho,Robertson Lee,Ciordia Sergio,Horrigue-Raouani Najet,Navas Alfonso,Abdel-Azeem Ahmed M.

Abstract

Abstract Background In our continuing search for biologically active natural enemies from North of Africa with special reference to Tunisian fungi, our teamwork screened fungi from different ecological habitats in Tunisia. Our previous study on the comparative effectiveness of filamentous fungi in the biocontrol of Meloidogyne javanica, a taxon (Lecanicillium) showed high potentiality against M. javanica. We undertook the present study to evaluate the ability and understand the mechanism of this fungal parasite as a biological control candidate against the root-knot nematode M. javanica. This study used in vitro bioassays with fungal filtrate cultures, scanning electron microscopy (SEM) observation, and isobaric tag for relative and absolute quantitation (iTRAQ) methodology to characterize the biological and molecular features of this fungus. Results The microscopic and SEM observation revealed that Lecanicillium sp. exhibited exceptional hyperparasitism against M. javanica eggs. The hyphae of this fungi penetrated the eggs, causing destructive damage to the outer eggshell. The exposure to five concentrations of Lecanicillium sp. filtrate cultures showed high inhibition of egg hatching, which increases depending on the exposure time; the best results are recorded at 50%, 75%, and 100% dilutions after seven days of exposure. The SEM observation of nematode-parasitized eggs and juveniles suggests that the production of lytic enzymes degrades the egg cuticle and fungal hyphae penetrate unhatched M.javanica juveniles. Forty-seven unique proteins were identified from the Lecanicillium sp. isolate. These proteins have signalling and stress response functions, bioenergy, metabolism, and protein synthesis and degradation. Conclusion Collectively, Lecanicillium sp. had ovicidal potentiality proved by SEM and proteomic analysis against root-knot nematode’ eggs. This study recommended applying this biological control candidate as a bio-agent on vegetable crops grown in situ.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3