Author:
Naderi Ghazal,Asadian Mahla,Khaki Pegah Afarinesh,Salehi Mohammadreza,Abdollahi Alireza,Douraghi Masoumeh
Abstract
Abstract
Aim
The Acinetobacter baumannii genomic resistance islands (AbGRIs), which were characterized in the genome of the global clone 2 (GC2) A. baumannii contain resistance genes. Here, we aimed to determine the occurrence of AbGRIs in GC2 A. baumannii obtained from COVID-19 patients in a referral hospital in Tehran, Iran.
Methods
A total of 19 carbapenem-resistant A. baumannii (CRAB) isolates belonging to GC2 and sequence type 2 (ST2), including 17 from COVID-19 patients and two from the devices used in the ICU that the COVID-19 patients were admitted, were examined in this study. Antibiotic susceptibility testing was performed by the disk diffusion method. PCR and PCR mapping, followed by sequencing, were performed to characterize the structure of AbGRI resistance islands in the isolates tested.
Results
The AbGRI3 was the most frequent resistance island (RI) detected, present in all the 19 isolates, followed by AbGRI1 (15 isolates; 78.9%) and AbGRI2 (three isolates; 15.8%). Notably, AbGRIs were identified in one of the A. baumannii strains, which was isolated from a medical device used in the ICU where COVID-19 patients were admitted. Furthermore, new structures of AbGRI1 and AbGRI3 resistance islands were found in this study, which was the first report of these structures.
Conclusions
The present study provided evidence for the circulation of the GC2 A. baumannii strains harboring AbGRI resistance islands in a referral hospital in Tehran, Iran. It was found that resistance to several classes of antibiotics in the isolates collected from COVID-19 patients is associated with the resistance genes located within AbGRIs.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology