Author:
Sherif Ahmed H.,Kassab Amina S.
Abstract
Abstract
Background
Aeromonas hydrophila is an opportunistic pathogen. Thus, it has received significant attention mainly in the fish sectors with high production scales. Nile tilapia broodstock confined in the environment of fish hatcheries can be stressed. Hence, they are vulnerable to A. hydrophila.
Results
Sequencing of the gyr B gene revealed the presence of 18 different A. hydrophila strains (kdy 10,620–10,637), which were deposited in the NCBI under accession numbers ON745861–ON745878. The median lethal doses of the isolates ranged from 2.62 × 104 to 3.02 × 106 CFU/mL. Antibiotic resistant genes, sulfonamide (sul1) and tetracycline (tetA) were found in the eighteen isolates. Approximately 83.3% of A. hydrophila strains were sensitive to ciprofloxacin and florfenicol. Further, eight A. hydrophila strains had high MDR indices at 0.27–0.45. All isolates presented with hemolysin activity. However, only 72.22% of them had proteolytic activity, and only 61.11% could form biofilms. Bacterial isolates harbored different pattern virulence genes, the heat-stable cytotonic enterotoxin (ast), cytotoxic enterotoxin (act), and hemolysin (hly) genes were the most prevalent. Also, a trial to inhibit bacterial growth was conducted using titanium dioxide nanoparticles (TiO2 NPs) with three sizes (13, 32, and 123 nm). If A. hydrophila strains with a high MDR index were tested against TiO2 NPs (20 µg/mL) for 1, 12, and 24 h, those with a small size had a greater bactericidal action than large ones. Bacterial strains were inhibited at different percentages in response to TiO2 NP treatment.
Conclusions
Nile tilapia broodstock, mortality is associated with different A. hydrophila strains, which harbored virulent and MDR genes. Furthermore, TiO2 NPs had bactericidal activity, thereby resulting in a considerable reduction in bacterial load.
Funder
Animal Health Research Institute
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference100 articles.
1. FAO, Food and Agriculture Organization of the United Nations The state of world fisheries and aquaculture 2020: Sustainability in action. Rome: Food and Agriculture Organization of the United Nations; 2020. p. 1–244.
2. Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. https://doi.org/10.1128/cmr.00039-091.
3. Ottaviani, D, Parlani C, Citterio B, Masini L, Leoni F, Canonico C, ... Pianetti A. Putative virulence properties of Aeromonas strains isolated from food, environmental and clinical sources in Italy: a comparative study. Int J Food Microbiol. 2011;144(3): 538–545.https://doi.org/10.1016/j.ijfoodmicro.2010.11.020
4. Abdelsalam M, Elgendy MY, Elfadadny MR, Ali SS, Sherif AH, Abolghait SK. A review of molecular diagnoses of bacterial fish diseases. Aquac Int. 2022. https://doi.org/10.1007/s10499-022-00983-8.
5. Yu J, Koo BH, Kim DH, Kim DW, Park SW. Aeromonas sobria infection in farmed mud loach (Misgurnus mizolepis) in Korea, a bacteriological survey. Iran J Vet Res. 2015;16(2):194–201.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献