Antimicrobial activity of D-amino acid in combination with photo-sonoactivated hypericin nanoparticles against Acinetobacter baumannii

Author:

Pourhajibagher Maryam,Hosseini Nava,Bahador Abbas

Abstract

Abstract Background The emergence of multidrug-resistant Acinetobacter baumannii strains is increasing worldwide. To overcome these life-threatening infections, the development of new treatment approaches is critical. For this purpose, this study was conducted to determine the antimicrobial photo-sonodynamic therapy (aPSDT) using hypericin nanoparticles (HypNP) in combination with D-Tryptophan (D-Trp) against A. baumannii. Materials and methods HypNP was synthesized and characterized, followed by the determination of the fractional inhibitory concentration (FIC) index of HypNP and D-Trp by checkerboard assay. Next, the antimicrobial and anti-biofilm potential of HypNP@D-Trp-mediated aPSDT against A. baumannii was evaluated. Finally, the anti-virulence activity of aPSDT using HypNP@D-Trp was accessed following the characterization of HypNP@D-Trp interaction with AbaI using in silico virtual screening and molecular docking. Results A synergistic activity in the combination of HypNP and D-Trp against A. baumannii was observed with a FIC index value of 0.5. There was a 5.10 log10 CFU/mL reduction in the cell viability of A. baumannii when the bacterial cells were treated with 1/2 × MIC of HypNP@D-Trp and subsequently exposed to ultrasound waves and blue light (P < 0.05). Moreover, a significant biofilm degradation effect on biofilm-associated cells of A. baumannii was observed after treatment with aPSDT using 2 × MIC of HypNP@D-Trp in comparison with the control groups (P < 0.05). According to the molecular docking analysis of the protein-ligand complex, Hyp with a high affinity for AbaI showed a binding affinity of − 9.41 kcal/mol. Also, the expression level of abaI gene was significantly downregulated by 10.32-fold in A. baumannii treated with aPSDT as comprised with the control group (P < 0.05). Conclusions It can be concluded that HypNP@D-Trp-mediated aPSDT can be considered a promising strategy to overcome the infections caused by A. baumannii by reducing the growth of bacterial biofilm and decreasing the expression of abaI as a gene involved in A. baumannii biofilm formation.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference79 articles.

1. Amraei S, Eslami G, Taherpour A, Hashemi A. Relationship between MOX genes and antibiotic resistance in Klebsiella pneumoniae strains in nosocomial infections. Micro Nano Bio Asp. 2022;1(2):12–7.

2. Bahador A, Raoofian R, Taheri M, Pourakbari B, Hashemizadeh Z, Hashemi FB. Multidrug resistance among Acinetobacter baumannii isolates from Iran: changes in antimicrobial susceptibility patterns and genotypic profile. Microb Drug Resist. 2014;20(6):632–40.

3. Amraei S, Eslami G, Taherpour A, Hashemi A. The role of ACT and FOX genes in Klebsiella pneumoniae strains isolated from hospitalized patients. Micro Nano Bio Asp. 2022;1(2):18–25.

4. Alavi M, Hamblin MR, Kennedy JF. Antimicrobial applications of lichens: secondary metabolites and green synthesis of silver nanoparticles: a review. Nano Micro Bios. 2022;1(1):15–21.

5. Alavi M, Martinez F, Delgado DR, Tinjacá DA. Anticancer and antibacterial activities of embelin: micro and nano aspects. Micro Nano Bio Asp. 2022;1(1):30–7.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3