Abstract
Abstract
Background
The widespread use of antibiotics has led to the emergence of many drug-resistant strains; thus, the development of new antibacterial drugs is essential with antimicrobial peptides becoming the focus of research. This study assessed the antibacterial effect of a novel antimicrobial peptide, named LL-1 on Escherichia coli (E.coli) by determining the minimum inhibitory concentration (MIC) and the antibacterial curve. The interaction between LL-1 and E. coli DNA was then detected by nucleic acid gel electrophoresis. The effect of LL-1 on the E. coli cell membrane was assessed by detecting the leakage of β-galactosidase, nucleic acid and protein. The influence of LL-1 on the intracellular ATP of E. coli was analysed by determining the concentration of intracellular ATP. Finally, the bacteria and colonies of E. coli treated with LL-1 were observed using scanning and transmission electron microscopy.
Results
The results suggested that the MIC value was 3.125 µg/ml, and the antibacterial effect was dose-dependent. LL-1 dose-dependently combined with E. coli DNA. LL-1 resulted in the leakage of intracellular β-galactosidase, nucleic acid and protein, and decreased intracellular ATP concentrations of E. coli. Two MIC of LL-1 caused E. coli to shrink, resulting in a rough surface, plasmolysis, and bacterial adhesion.
Conclusion
This study indicated that LL-1 had a good bactericidal effect on E. coli by mainly increasing the permeability of the cell membrane, leading to leakage of the intracellular content. This will lay the foundation for an in-depth study on the antibacterial mechanism of LL-1 against E. coli and its clinical application.
Funder
Research and Development Fund Project for Anyang Institute of Technology
Science and Technology Research Project of Henan Province
Postdoctoral Research Fund for Anyang Institute of Technology
Huanshui Scholars Fund for Anyang Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference38 articles.
1. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;7586:336–43.
2. Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;6459:1944-eaaw1944.
3. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;10325:629–55.
4. Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the Era of antimicrobial resistance. Trends Microbiol. 2019;4:323–38.
5. Leptihn S. Welcome back to the pre-penicillin era. Why we desperately need new strategies in the battle against bacterial pathogens. Infect Microbes Dis. 2019;1(2):33.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献