Author:
Chen Wenjing,He Chunyan,Yang Han,Shu Wen,Cui Zelin,Tang Rong,Zhang Chuanling,Liu Qingzhong
Abstract
Abstract
Background
The data on the prevalence of resistance to mupirocin (MUP), fusidic acid (FA) and retapamulin (RET) in methicillin-resistant Staphylococcus aureus (MRSA) from China are still limited. This study aimed to examine these three antibiotics resistance in 1206 MRSA clinical isolates from Eastern China. Phenotypic MUP, FA and RET resistance was determined by minimum inhibitory concentrations (MICs), and genotypic by PCR and DNA sequencing of the mupA/B, fusB-D, cfr, vgaA/Av/ALC/B/C/E, lsaA-C/E and salA and mutations in ileS, fusA/E, rplC, and 23S RNA V domain. The genetic characteristics of resistance isolates were conducted by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST).
Results
Overall MRSA MUP, FA and RET resistance was low (5.1, 1.0 and 0.3%, respectively). MupA was the mechanism of high-level MUP resistance. All low-level MUP resistance isolates possessed an equivocal mutation N213D in IleS; of these, 2 reported an additional V588F mutation with an impact on the Rossman fold. FusA mutations, such as L461K, H457Q, H457Y and V90I were the primary FA mechanisms among high-level resistance isolates, most of which also contained fusC; however, all low-level resistance strains carried fusB. Except lsaE gene detected in one isolate, no other resistance mechanisms tested were found among RET-resistant isolates. Additionally, sixteen PFGE types (A-P) were observed, among which type B was the most common (49/76, 64.5%), followed by types E and G (4/76, 5.3% each) and types C and M (3/76, 3.9% each). All resistant strains were divided into 15 ST types by MLST. ST764 (24/76, 31.6%), ST630 (11/76, 14.5%), ST239 (9/76, 11.8%) and ST5 (7/76, 9.2%) were the major types. PFGE type B isolates with the aforementioned STs were mainly found in mupirocin resistant isolates.
Conclusions
MUP, FA and RET exhibited highly activity against the MRSA isolates. Acquired genes and chromosome-borne genes mutations were responsible for MUP and FA resistance; however, the mechanism for some RET-resistant isolates remains to be further elucidated. Also, the surveillance to MUP in MRSA should be strengthened to prevent elevated resistance due to the expansion of clones.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献