Author:
Zhou An,Tang Bo,Xie Yuhong,Li Shengpeng,Xiao Xu,Wu Lingyi,Tu Dianji,Wang Sumin,Feng Yunxuan,Feng Xiaojie,Lai Yi,Ning Shoubin,Yang Shiming
Abstract
AbstractPeutz–Jeghers Syndromeis a rare autosomal dominant genetic disease characterized by gastrointestinal hamartomatous polyps and skin and mucous membrane pigmentation. The pathogenesis of PJS remains unclear; however, it may be associated with mutations in the STK11 gene, and there is currently no effective treatment available. The gut microbiota plays an important role in maintaining intestinal homeostasis in the human body, and an increasing number of studies have reported a relationship between gut microbiota and human health and disease. However, relatively few studies have been conducted on the gut microbiota characteristics of patients with PJS. In this study, we analyzed the characteristics of the gut microbiota of 79 patients with PJS using 16 S sequencing and measured the levels of short-chain fatty acids in the intestines. The results showed dysbiosis in the gut microbiota of patients with PJS, and decreased synthesis of short-chain fatty acids. Bacteroides was positively correlated with maximum polyp length, while Agathobacter was negatively correlated with age of onset. In addition, acetic acid, propionic acid, and butyric acid were positively correlated with the age of onset but negatively correlated with the number of polyps. Furthermore, the butyric acid level was negatively correlated with the frequency of endoscopic surgeries. In contrast, we compared the gut microbiota of STK11-positive and STK11-negative patients with PJS for the first time, but 16 S sequencing analysis revealed no significant differences. Finally, we established a random forest prediction model based on the gut microbiota characteristics of patients to provide a basis for the targeted diagnosis and treatment of PJS in the future.
Funder
Key Project of the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference49 articles.
1. Tacheci I, Kopacova M, Bures J. Peutz-Jeghers syndrome. Curr Opin Gastroenterol. 2021;37:245–54.
2. Hemminki A. The molecular basis and clinical aspects of Peutz-Jeghers syndrome. Cell Mol Life Sci. 1999;55:735–50.
3. Sengupta S, Bose S. Peutz-Jeghers Syndrome. N Engl J Med. 2019;380:472.
4. Li L, Yao Y, Zhao J, Cao J, Ma H. Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. Int J Obes (Lond). 2020;44:1075–86.
5. McGarrity TJ, Amos CI, Baker MJ. Peutz-Jeghers Syndrome. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al. editors. GeneReviews(®). Seattle (WA): University of Washington, Seattle Copyright © 1993–2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献