Evaluation of 1021Bp, a close relative of Pseudomonas eucalypticola, for potential of plant growth promotion, fungal pathogen suppression and boxwood blight control

Author:

Kong PingORCID,Hong ChuanxueORCID

Abstract

Abstract Background Pseudomonas eucalypticola, a new species of the P. fluorescens group that generates most Pseudomonas-based biocontrol agents, has not been found in any plants other than Eucalyptus dunnii leaves. Except for antagonism to the growth of a few fungi, its features in plant growth promotion and disease control have not been evaluated. Here, we identified a similar species of P. eucalypticola, 1021Bp, from endophyte cultures of healthy leaves of English boxwood (Buxus sempervirens ‘Suffruticosa’) and investigated its antifungal activity, plant growth promotion traits, and potential for boxwood blight control. Results Colorimetric or plate assays showed the properties of 1021Bp in nitrogen fixation, phosphate solubilization, and production of indole-3-acetic acid (IAA) and siderophores, as well as the growth suppression of all five plant fungal pathogens, including causal agents of widespread plant diseases, gray mold, and anthracnose. Boxwood plant leaves received 87.4% and 65.8% protection from infection when sprayed with cell-free cultural supernatant (CFS) but not the resuspended bacterial cells at 108–9/mL of 1021Bp at one and seven days before inoculation (dbi) with boxwood blight pathogen, Calonectria pseudonaviculata, at 5 × 104 spores/mL. They also received similarly high protection with the 1021Bp cell culture without separation of cells and CFS at 14 dbi (67.5%), suggesting a key role of 1021Bp metabolites in disease control. Conclusions Given the features of plant growth and health and its similarity to P. eucalypticola with the P. fluorescens lineage, 1021Bp has great potential to be developed as a safe and environmentally friendly biofungicide and biofertilizer. However, its metabolites are the major contributors to 1021Bp activity for plant growth and health. Application with the bacterial cells alone, especially with nonionic surfactants, may result in poor performance unless survival conditions are present.

Funder

Specialty Crop Block Grant Program (SCBGP) at the U.S. Department of Agriculture (USDA) Agricultural Marketing Service

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3