Improved production of lactiplantibacillus plantarum RO30 exopolysaccharide (REPS) by optimization of process parameters through statistical experimental designs

Author:

Elmansy Eman AhmedORCID,Elkady Ebtsam M.,Asker Mohsen S.,Abdallah Nagwa A.,Khalil Bigad E.,Amer Shaimaa k.

Abstract

Abstract Background In investigating of (exopolysaccharide) EPS from unconventional sources, lactic acid bacteria have a vital role due to their generally recognized as safe (GRAS) status. EPSs have diverse applications such as drug delivery, antimicrobial activity, surgical implants, and many more in many sectors. Despite being important, the main hindrance to the commercial application of these significant biopolymers is low productivity. Therefore, this study primarily focuses on optimizing physio-chemical conditions to maximize the previously produced EPS from probiotic Lactiplantibacillus plantarum RO30 (L. plantarum RO30) using one factor at a time (OFAT) and method Response Surface Methodology (RSM). Results The EPS obtained from L. plantarum RO30 named REPS. The medium formulation for REPS production using the OFAT method revealed that sucrose (20 g/L, beef extract (25 g/L), and ammonium sulfate at 4 g/L concentration were the optimum carbon, organic and inorganic nitrogen sources, and REPS yield was increased up to 9.11 ± 0.51 g/L. RSM experiments revealed that, a greatly significant quadratic polynomial attained from the Central Composite Design (CCD) model was fruitful for specifying the most favorable cultural conditions that have significant consequences on REPS yield. The maximal amount of REPS (10.32 g/L) was formed by: sucrose (40 g/L), beef extract (25 g/L), pH (5.5), incubation temperature (30 °C), and incubation period (72 h). A high closeness was obtained between the predicted and experimental values and it displayed the efficiency of the RSM. Conclusion This study was conducted to reinforce REPS production in the probiotic LAB L. plantarum RO30 by utilizing various experimental parameters. The maximum REPS yield of 10.32 g/L was attained under the circumstances optimized in the study.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3