Genome-wide transcriptional response to silver stress in extremely halophilic archaeon Haloferax alexandrinus DSM 27206 T

Author:

Buda Doriana Mădălina,Szekeres Edina,Tudoran Lucian Barbu,Esclapez Julia,Banciu Horia Leonard

Abstract

Abstract Background The extremely halophilic archaeon Haloferax (Hfx.) alexandrinus DSM 27206 T was previously documented for the ability to biosynthesize silver nanoparticles while mechanisms underlying its silver tolerance were overlooked. In the current study, we aimed to assess the transcriptional response of this haloarchaeon to varying concentrations of silver, seeking a comprehensive understanding of the molecular determinants underpinning its heavy metal tolerance. Results The growth curves confirmed the capacity of Hfx. alexandrinus to surmount silver stress, while the SEM–EDS analysis illustrated the presence of silver nanoparticles in cultures exposed to 0.5 mM silver nitrate. The RNA-Seq based transcriptomic analysis of Hfx. alexandrinus cells exposed to 0.1, 0.25, and 0.5 mM silver nitrate revealed the differential expression of multiple sets of genes potentially employed in heavy-metal stress response, genes mostly related to metal transporters, basic metabolism, oxidative stress response and cellular motility. The RT-qPCR analysis of selected transcripts was conducted to verify and validate the generated RNA-Seq data. Conclusions Our results indicated that copA, encoding the copper ATPase, is essential for the survival of Hfx. alexandrinus cells in silver-containing saline media. The silver-exposed cultures underwent several metabolic adjustments that enabled the activation of enzymes involved in the oxidative stress response and impairment of the cellular movement capacity. To our knowledge, this study represents the first comprehensive analysis of gene expression in halophillic archaea facing increased levels of heavy metals.

Funder

Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCD

Vicerrectorado de Investigación y Transferencia de Conocimiento of the University of Alicante

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3