Elevated atmospheric CO2 concentrations caused a shift of the metabolically active microbiome in vineyard soil

Author:

Rosado-Porto David,Ratering Stefan,Wohlfahrt Yvette,Schneider Bellinda,Glatt Andrea,Schnell Sylvia

Abstract

Abstract Background Elevated carbon dioxide concentrations (eCO2), one of the main causes of climate change, have several consequences for both vine and cover crops in vineyards and potentially also for the soil microbiome. Hence soil samples were taken from a vineyard free-air CO2 enrichment (VineyardFACE) study in Geisenheim and examined for possible changes in the soil active bacterial composition (cDNA of 16S rRNA) using a metabarcoding approach. Soil samples were taken from the areas between the rows of vines with and without cover cropping from plots exposed to either eCO2 or ambient CO2 (aCO2). Results Diversity indices and redundancy analysis (RDA) demonstrated that eCO2 changed the active soil bacterial diversity in grapevine soil with cover crops (p-value 0.007). In contrast, the bacterial composition in bare soil was unaffected. In addition, the microbial soil respiration (p-values 0.04—0.003) and the ammonium concentration (p-value 0.003) were significantly different in the samples where cover crops were present and exposed to eCO2. Moreover, under eCO2 conditions, qPCR results showed a significant decrease in 16S rRNA copy numbers and transcripts for enzymes involved in N2 fixation and NO2 reduction were observed using qPCR. Co-occurrence analysis revealed a shift in the number, strength, and patterns of microbial interactions under eCO2 conditions, mainly represented by a reduction in the number of interacting ASVs and the number of interactions. Conclusions The results of this study demonstrate that eCO2 concentrations changed the active soil bacterial composition, which could have future influence on both soil properties and wine quality.

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3