Effects of adding corn steep liquor on bacterial community composition and carbon and nitrogen transformation during spent mushroom substrate composting

Author:

Sun Ning,Fan Bowen,Yang Fengjun,Zhao Liqin,Wang Mengmeng

Abstract

Abstract Background Carbon and nitrogen are essential energy and nutrient substances in the composting process. Corn steep liquor (CSL) is rich in soluble carbon and nitrogen nutrients and active substances and is widely used in the biological industry. Nonetheless, limited research has been done on the effect of CSL on composting. This work firstly reveals the effect of adding CSL to bacterial community composition and carbon and nitrogen conversion during composting. This study provides the choice of auxiliary materials for the spent mushroom substrate compost (SMS) and some novel knowledge about the effect of bacterial community on C and N cycling during composting of SMS and CSL. Two treatments were set up in the experiment: 100% spent mushroom substrate (SMS) as CK and SMS + 0.5% CSL (v/v) as CP. Results The results showed that the addition of CSL enhanced the initial carbon and nitrogen content of the compost, altered the bacterial community structure, and increased the bacterial diversity and relative abundance, which might be beneficial to the conversion and retention of carbon and nitrogen in the composting process. In this paper, network analysis was used to screen the core bacteria involved in carbon and nitrogen conversion. In the CP network, the core bacteria were divided into two categories, synthesizing and degrading bacteria, and there were more synthesizing bacteria than degrading bacteria, so the degradation and synthesis of organic matter were carried out simultaneously, while only degrading bacteria were found in the CK network. Functional prediction by Faprotax identified 53 groups of functional bacteria, among which 20 (76.68% abundance) and 14 (13.15% abundance) groups of functional bacteria were related to carbon and nitrogen conversion, respectively. Adding CSL stimulated the compensatory effect of core and functional bacteria, enhanced the carbon and nitrogen transformation ability, stimulated the activity of low-abundance bacteria, and reduced the competitive relationship between the bacterial groups. This may be why the addition of CSL accelerated the organic matter degradation and increased carbon and nitrogen preservation. Conclusions These findings indicate that the addition of CSL promoted the cycling and preservation of carbon and nitrogen in the SMS composts, and the addition of CSL to the compost may be an effective way to dispose of agricultural waste.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced chromium and nitrogen removal by constructing a biofilm reaction system based on denitrifying bacteria preferential colonization theory;Ecotoxicology and Environmental Safety;2024-03

2. Valorization of Corn Steep Liquor for Improved Value-added Products: A Review;Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering);2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3