Isolation of nontuberculous mycobacteria species from different water sources: a study of six hospitals in Tehran, Iran

Author:

Moghaddam Sina,Nojoomi Farshad,Dabbagh Moghaddam Arasb,Mohammadimehr Mojgan,Sakhaee Fatemeh,Masoumi Morteza,Siadat Seyed Davar,Fateh Abolfazl

Abstract

Abstract Purpose Nontuberculous mycobacteria (NTM) are ubiquitous bacteria that are naturally resistant to disinfectants and antibiotics and can colonize systems for supplying drinking water. Therefore, this study aimed to evaluate the prevalence of NTM in the drinking water of six hospitals in Tehran, Iran. Methods Totally, 198 water samples were collected. Each water sample was filtered via a membrane filter with a pore size of 0.45 µm and then decontaminated by 0.005% cetylpyridinium chloride. The membrane filters were incubated on two Lowenstein-Jensen media at 25 °C and 37 °C for 8 weeks. The positive cultures were identified with phenotypic tests, and then NTM species were detected according to the hsp65rpoB, and 16S rDNA genes. Drug susceptibility testing (DST) was also carried out. Results Overall, 76 (40.4%) of the isolates were slowly growing mycobacteria (SGM) and 112 (59.6%) of the ones were rapidly growing mycobacteria (RGM). The most common NTM were Mycobacterium aurum, M. gordonae, M. phocaicum, M. mucogenicum, M. kansasii, M. simiae, M. gadium, M. lentiflavum, M. fortuitum, and M. porcinum. Among these 188 samples, NTM ranged from 1 to > 300 colony-forming unit (CFU) /500 mL, with a median of 182 CFU/500 mL. In the infectious department of all hospitals, the amount of CFU was higher than in other parts of the hospitals. The DST findings in this study indicated the diversity of resistance to different drugs. Among RGM, M. mucogenicum was the most susceptible isolate; however, M. fortuitum showed a different resistance pattern. Also, among SGM isolates, M. kansasii and M. simiae, the diversity of DST indicated. Conclusions The current study showed NTM strains could be an important component of hospital water supplies and a possible source of nosocomial infections according to the CFU reported in this study. The obtained findings also help clarify the dynamics of NTM variety and distribution in the water systems of hospitals in the research area.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference37 articles.

1. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE. Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg Infect Dis. 2021;27(1):140.

2. Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, Bell SC, Thomson RM, Miles JJ. The rise of non-tuberculosis mycobacterial lung disease. Frontiers Immunol. 2020;11:303.

3. Blanc S, Robinson D, Fahrenfeld N. Potential for nontuberculous mycobacteria proliferation in natural and engineered water systems due to climate change: A literature review. City and Environment Interactions. 2021;11:100070.

4. Falkinham JO 3rd. Ecology of nontuberculous mycobacteria--where do human infections come from? Semin Respir Crit Care Med. 2013;34(1):95-102.

5. Allen M, Antwi-Agyei P, Aragon-Durand F, Babiker M, Bertoldi P, Bind M, Brown S, Buckeridge M, Camilloni I, Cartwright A. Technical Summary: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Geneve, Switzerland: Intergovernmental Panel on Climate Change; 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3