Author:
M. Shafik Shokri,Abbas Hisham A.,Yousef Nehal,Saleh Moustafa M.
Abstract
Abstract
Introduction
The emergence of multidrug-resistant Klebsiella pneumoniae in hospitals represents a serious threat to public health. Infections caused by Klebsiella pneumoniae are widespread in healthcare institutions, mainly pneumonia, bloodstream infections, and infections affecting neonates in intensive care units; so, it is necessary to combat this pathogen with new strategies. Targeting virulence factors necessary to induce host damage and disease is a new paradigm for antimicrobial therapy with several potential benefits that could lead to decreased resistance.
Background
The influence of metformin, N-acetylcysteine, and secnidazole on Klebsiella pneumoniae virulence factors production was tested. The production of Klebsiella pneumoniae virulence factors such as biofilm formation, urease, proteases, hemolysins, and tolerance to oxidative stress was evaluated phenotypically using sub-inhibitory concentration (1/8 MIC) of metformin, N-acetylcysteine, and secnidazole. For more confirmation, qRT-PCR was used to assess the relative expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes regulating virulence factors production.
Results
Metformin, N-acetylcysteine, and secnidazole were all found to have a powerful inhibitory effect on the production of virulence factors phenotypically. Our results showed a significant reduction in the expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes. Furthermore, the tested drugs were investigated in vivo to inform their ability to protect mice against Klebsiella pneumoniae pathogenesis.
Conclusions
Metformin, N-acetylcysteine, and secnidazole inhibited the virulence of Klebsiella pneumoniae. Besides combating resistant Klebsiella pneumoniae, the tested drugs could also serve as an adjuvant to traditional antibiotics.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology