Towards unlocking the biocontrol potential of Pichia kudriavzevii for plant fungal diseases: in vitro and in vivo assessments with candidate secreted protein prediction

Author:

Elkhairy Bassma Mahmoud,Salama Nabil Mohamed,Desouki Abdalrahman Mohammad,Abdelrazek Ashraf Bakry,Soliman Khaled Abdelaziz,Ibrahim Samir Abdelaziz,Khalil Hala BadrORCID

Abstract

Abstract Background Plant fungal pathogens cause substantial economic losses through crop yield reduction and post-harvest storage losses. The utilization of biocontrol agents presents a sustainable strategy to manage plant diseases, reducing the reliance on hazardous chemical. Recently, Pichia kudriavzevii has emerged as a promising biocontrol agent because of its capacity to inhibit fungal growth, offering a potential solution for plant disease management. Results Two novel Pichia kudriavzevii strains, Pk_EgyACGEB_O1 and Pk_EgyACGEB_O2, were isolated from olive brine samples. The microscopic characterization of the strains revealed similar structures. However, there were noticeable differences in their visual morphology. Based on their internal transcribed spacer (ITS) DNA sequences, Pk_EgyACGEB_O1 and Pk_EgyACGEB_O2 strains assigned by GenBank IDs MZ507552.1 and MZ507554.1 shared high sequence similarity (~ 99.8% and 99.5%) with P. kudriavzevii, respectively. Both strains were evaluated in vitro against plant pathogenic fungi. The strains revealed the ability to consistently inhibit fungal growth, with Pk_EgyACGEB_O2 showing higher effectiveness. In addition, both P. kudriavzevii strains effectively controlled grey mold disease caused by B. cinerea in golden delicious apples, suggesting their potential as sustainable and eco-friendly biocontrol agents for post-harvest diseases. Based on a comprehensive bioinformatics pipeline, candidate-secreted proteins responsible for the potent antifungal activity of P. kudriavzevii were identified. A total of 59 proteins were identified as common among the P. kudriavzevii CBS573, SD108, and SD129 strains. Approximately 23% of the secreted proteins in the P. kudriavzevii predicted secretome are hydrolases with various activities, including proteases, lipases, glycosidases, phosphatases, esterases, carboxypeptidases, or peptidases. In addition, a set of cell-wall-related proteins was identified, which might enhance the biocontrol activity of P. kudriavzevii by preserving the structure and integrity of the cell wall. A papain inhibitor was also identified and could potentially offer a supplementary defense against plant pathogens. Conclusion Our results revealed the biocontrol capabilities of P. kudriavzevii against plant pathogenic fungi. The research focused on screening novel strains for their ability to inhibit the growth of common pathogens, both in vitro and in vivo. This study shed light on how P. kudriavzevii interacts with fungal pathogens. The findings can help develop effective strategies for managing plant diseases.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3