Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis

Author:

Alderliesten Jesse B.ORCID,Duxbury Sarah J. N.,Zwart Mark P.,de Visser J. Arjan G. M.,Stegeman Arjan,Fischer Egil A. J.

Abstract

Abstract Background Conjugation plays a major role in the transmission of plasmids encoding antibiotic resistance genes in both clinical and general settings. The conjugation efficiency is influenced by many biotic and abiotic factors, one of which is the taxonomic relatedness between donor and recipient bacteria. A comprehensive overview of the influence of donor-recipient relatedness on conjugation is still lacking, but such an overview is important to quantitatively assess the risk of plasmid transfer and the effect of interventions which limit the spread of antibiotic resistance, and to obtain parameter values for conjugation in mathematical models. Therefore, we performed a meta-analysis on reported conjugation frequencies from Escherichia coli donors to various recipient species. Results Thirty-two studies reporting 313 conjugation frequencies for liquid broth matings and 270 conjugation frequencies for filter matings were included in our meta-analysis. The reported conjugation frequencies varied over 11 orders of magnitude. Decreasing taxonomic relatedness between donor and recipient bacteria, when adjusted for confounding factors, was associated with a lower conjugation frequency in liquid matings. The mean conjugation frequency for bacteria of the same order, the same class, and other classes was 10, 20, and 789 times lower than the mean conjugation frequency within the same species, respectively. This association between relatedness and conjugation frequency was not found for filter matings. The conjugation frequency was furthermore found to be influenced by temperature in both types of mating experiments, and in addition by plasmid incompatibility group in liquid matings, and by recipient origin and mating time in filter matings. Conclusions In our meta-analysis, taxonomic relatedness is limiting conjugation in liquid matings, but not in filter matings, suggesting that taxonomic relatedness is not a limiting factor for conjugation in environments where bacteria are fixed in space.

Funder

ZonMw

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference89 articles.

1. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. U.S. Department of Health and Human Services. 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed 29 Nov 2019.

2. European Commission. A european one health action plan against antimicrobial resistance. 2017. https://ec.europa.eu/health/amr/sites/health/files/antimicrobial_resistance/docs/amr_2017_action-plan.pdf. Accessed 19 May 2020.

3. World Health Organization. Global action plan on antimicrobial resistance. World Health Organization. 2015. https://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/. Accessed 19 May 2020.

4. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303:298–304.

5. Hasegawa H, Suzuki E, Maeda S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front Microbiol. 2018;9:2365.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3