Author:
Liu Fang,Ma Lin,Chen Weifeng,Wang Sifan,Wei Chuanzheng,Huang Chengpo,Jiang Yimin,Wang Song,Lin Hongyan,Chen Jian,Wang Gang,Xie Baogui,Yuan Zongsheng
Abstract
Abstract
Background
A high concentration of CO2 will stagnate the development of the newly formed primordia of Hypsizygus marmoreus, hinder the development of the mushroom cap, thereby inhibiting the normal differentiation of the fruiting body. Moreover, in the previous experiment, our research group obtained the mutant strain HY68 of H. marmoreus, which can maintain normal fruiting under the condition of high concentration of CO2. Our study aimed to evaluate the CO2 tolerance ability of the mutant strain HY68, in comparison with the starting strain HY61 and the control strain HY62. We analyzed the mycelial growth of these strains under various conditions, including different temperatures, pH levels, carbon sources, and nitrogen sources, and measured the activity of the cellulose enzyme. Additionally, we identified and predicted β-glucosidase-related genes in HY68 and analyzed their gene and protein structures.
Results
Our results indicate that HY68 showed superior CO2 tolerance compared to the other strains tested, with an optimal growth temperature of 25 °C and pH of 7, and maltose and beef paste as the ideal carbon and nitrogen sources, respectively. Enzyme activity assays revealed a positive correlation between β-glucosidase activity and CO2 tolerance, with Gene14147 identified as the most closely related gene to this activity. Inbred strains of HY68 showed trait segregation for CO2 tolerance.
Conclusions
Both HY68 and its self-bred offspring could tolerate CO2 stress. The fruiting period of the strains resistant to CO2 stress was shorter than that of the strains not tolerant to CO2 stress. The activity of β-GC and the ability to tolerate CO2 were more closely related to the growth efficiency of fruiting bodies. This study lays the foundation for understanding how CO2 regulates the growth of edible fungi, which is conducive to the innovation of edible fungus breeding methods. The application of the new strain HY68 is beneficial to the research of energy-saving production in factory cultivation.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology