Seasonal meropenem resistance in Acinetobacter baumannii and influence of temperature-driven adaptation

Author:

Liu Xiaoxuan,Qin Pu,Wen Hainan,Wang Weigang,Zhao Jianhong

Abstract

Abstract Background Recognition of seasonal trends in bacterial infection and drug resistance rates may enhance diagnosis, direct therapeutic strategies, and inform preventive measures. Limited data exist on the seasonal variability of Acinetobacter baumannii. We investigated the seasonality of A. baumannii, the correlation between temperature and meropenem resistance, and the impact of temperature on this bacterium. Results Meropenem resistance rates increased with lower temperatures, peaking in winter/colder months. Nonresistant strain detection exhibited temperature-dependent seasonality, rising in summer/warmer months and declining in winter/colder months. In contrast, resistant strains showed no seasonality. Variations in meropenem-resistant and nonresistant bacterial resilience to temperature changes were observed. Nonresistant strains displayed growth advantages at temperatures ≥ 25 °C, whereas meropenem-resistant A. baumannii with β-lactamase OXA-23 exhibited greater resistance to low-temperature (4 °C) stress. Furthermore, at 4 °C, A. baumannii upregulated carbapenem resistance-related genes (adeJ, oxa-51, and oxa-23) and increased meropenem stress tolerance. Conclusions Meropenem resistance rates in A. baumannii display seasonality and are negatively correlated with local temperature, with rates peaking in winter, possibly linked to the differential adaptation of resistant and nonresistant isolates to temperature fluctuations. Furthermore, due to significant resistance rate variations between quarters, compiling monthly or quarterly reports might enhance comprehension of antibiotic resistance trends. Consequently, this could assist in formulating strategies to control and prevent resistance within healthcare facilities.

Funder

Hebei Natural Science Foundation

Foundation of Hebei Provincial Department of Finance

Hebei Province County level Comprehensive Hospital Suitable Health Technology Promotion Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3