Bacterial community in saline farmland soil on the Tibetan plateau: responding to salinization while resisting extreme environments

Author:

Li Yi Qiang,Chai Ying Hui,Wang Xu Sheng,Huang Li Ying,Luo Xi Ming,Qiu Cheng,Liu Qing Hai,Guan Xiang Yu

Abstract

Abstract Background Salinization damages the health of soil systems and reduces crop yields. Responses of microbial communities to salinized soils and their functional maintenance under high salt stress are valuable scientific problems. Meanwhile, the microbial community of the salinized soil in the plateau environment is less understood. Here, we applied metagenomics technology to reveal the structure and function of microorganisms in salinized soil of the Tibetan Plateau. Results The diversity of composition and function of microbial community in saline soil have changed significantly. The abundances of chemoautotrophic and acidophilic bacteria comprising Rhodanobacter, Acidobacterium, Candidatus Nitrosotalea, and Candidatus Koribacter were significantly higher in saline soil. The potential degradation of organic carbon in the saline soil, as well as the production of NO and N2O via denitrification, and the production of sulfate by sulfur oxidation were significantly higher than the non-saline soil. Both types of soils were rich in genes encoding resistance to environmental stresses (i.e., cold, ultraviolet light, and hypoxia in Tibetan Plateau). The resistance of the soil microbial communities to the saline environment is based on the absorption of K+ as the main mechanism, with cross-protection proteins and absorption buffer molecules as auxiliary mechanisms in our study area. Network analysis showed that functional group comprising chemoautotrophic and acidophilic bacteria had significant positive correlations with electrical conductivity and total sulfur, and significant negative correlations with the total organic carbon, pH, and available nitrogen. The soil moisture, pH, and electrical conductivity are likely to affect the bacterial carbon, nitrogen, and sulfur cycles. Conclusions These results indicate that the specific environment of the Tibetan Plateau and salinization jointly shape the structure and function of the soil bacterial community, and that the bacterial communities respond to complex and harsh living conditions. In addition, environmental feedback probably exacerbates greenhouse gas emissions and accelerates the reduction in the soil pH. This study will provide insights into the microbial responses to soil salinization and the potential ecological risks in the special plateau environment.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3