Abstract
Abstract
Background
Symbiotic interactions between insects and bacteria have been associated with a vast variety of physiological, ecological and evolutionary consequences for the host. A wide range of bacterial communities have been found in association with the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), an important pest of cultivated fruit in most regions of the world. We evaluated the diversity of gut bacteria in B. dorsalis specimens from several populations in Kenya and investigated the roles of individual bacterial isolates in the development of axenic (germ-free) B. dorsalis fly lines and their responses to the entomopathogenic fungus, Metarhizium anisopliae.
Results
We sequenced 16S rRNA to evaluate microbiomes and coupled this with bacterial culturing. Bacterial isolates were mono-associated with axenic B. dorsalis embryos. The shortest embryonic development period was recorded in flies with an intact gut microbiome while the longest period was recorded in axenic fly lines. Similarly, larval development was shortest in flies with an intact gut microbiome, in addition to flies inoculated with Providencia alcalifaciens. Adult B. dorsalis flies emerging from embryos that had been mono-associated with a strain of Lactococcus lactis had decreased survival when challenged with a standard dosage of M. anisopliae ICIPE69 conidia. However, there were no differences in survival between the germ-free lines and flies with an intact microbiome.
Conclusions
These findings will contribute to the selection of probiotics used in artificial diets for B. dorsalis rearing and the development of improved integrated pest management strategies based on entomopathogenic fungi.
Funder
European Union
Wellcome Trust
Global Health Institute of the École Polytechnique Fédérale de Lausanne
UK’s Foreign, Commonwealth & Development Office
the Swedish International Development Cooperation Agency
the Swiss Agency for Development and Cooperation
the Federal Democratic Republic of Ethiopia
the Government of the Republic of Kenya
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference71 articles.
1. Shi Z, Wang L, Zhang H. Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). Int J Mol Sci. 2012;13:6266–78.
2. Wan X, Nardi F, Zhang B, Liu Y. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS One. 2011;6:1–10.
3. De Villiers M, Hattingh V, Kriticos DJ, Brunel S, Vayssières J, Sinzogan A, et al. The potential distribution of Bactrocera dorsalis: considering phenology and irrigation patterns. Bull Entomol Res. 2016;106:19–33.
4. Manrakhan A, Venter JH, Hattingh V. The progressive invasion of Bactrocera dorsalis (Diptera: Tephritidae) in South Africa. Biol Invasions. 2015;17:2803–9.
5. Lux SA, Copeland RS, White IM, Manrakhan A, Billah MK. A new invasive fruit fly species from the Bactrocera dorsalis (Hendel) group detected in East Africa. Int J Trop Insect Sci. 2003;23:355–61. https://doi.org/10.1017/S174275840001242X.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献