The model cyanobacteria Anabaena sp. PCC 7120 possess an intact but partially degenerated gene cluster encoding gas vesicles

Author:

Cai Kun,Xu Bo-Ying,Jiang Yong-Liang,Wang Ying,Chen Yuxing,Zhou Cong-Zhao,Li QiongORCID

Abstract

Abstract Background Bacterial gas vesicles, composed of two major gas vesicle proteins and filled with gas, are a unique class of intracellular bubble-like nanostructures. They provide buoyancy for cells, and thus play an essential role in the growth and survival of aquatic and soil microbes. Moreover, the gas vesicle could be applied to multimodal and noninvasive biological imaging as a potential nanoscale contrast agent. To date, cylinder-shaped gas vesicles have been found in several strains of cyanobacteria. However, whether the functional gas vesicles could be produced in the model filamentous cyanobacteria Anabaena sp. PCC 7120 remains controversial. Results In this study, we found that an intact gvp gene cluster indeed exists in the model filamentous cyanobacteria Anabaena sp. PCC 7120. Real-time PCR assays showed that the gvpA gene is constitutively transcribed in vivo, and its expression level is upregulated at low light intensity and/or high growth temperature. Functional expression of this intact gvp gene cluster enables the recombinant Escherichia coli to gain the capability of floatation in the liquid medium, thanks to the assembly of irregular gas vesicles. Furthermore, crystal structure of GvpF in combination with enzymatic activity assays of GvpN suggested that these two auxiliary proteins of gas vesicle are structurally and enzymatically conserved, respectively. Conclusions Our findings show that the laboratory strain of model filamentous cyanobacteria Anabaena sp. PCC 7120 possesses an intact but partially degenerated gas vesicle gene cluster, indicating that the natural isolate might be able to produce gas vesicles under some given environmental stimuli for better floatation.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

National Synchrotron Radiation Laboratory

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3