Effects on community composition and function Pinus massoniana infected by Bursaphelenchus xylophilus

Author:

Hao Xin,Liu Xuefeng,Chen Jie,Wang Bowen,Li Yang,Ye Yi,Ma Wei,Ma Ling

Abstract

AbstractPine wilt disease (PWD) is a worldwide forest disease caused by pine wood nematode (PWN). In this article, we investigated the composition, organization, correlation, and function of the endophytic microbial community in Pinus massoniana field with and without PWN. Samples were taken from branches, upper, middle, and lower trunks, as well as soil, from both healthy and infected trees. The results showed that the fungal diversity of healthy pines is around 1.1 times that of infected pines, while the bacterial diversity is about 0.75 times that of infected pines at the OTUs level. An increase of the abundance of pathogenic fungus such as Saitozyma, Graphilbum, Diplodia, Candida, Pseudoxanthomonas, Dyella and Pantoea was witnessed in infected pines according to the result of LEfSe. Furthermore, Ophiostoma and saprophytic fungus such as Entomocorticium, ganoderma, tomentella, entomocorticium were exclusively prominent in infected pines, which were substantially and highly connected with other species (p < 0.05), indicating the trees’ vulnerability and making the wood blue. In healthy pines, the top three functional guilds are parasites, plant pathogens, and saprotrophs. Parasites (36.52%) are primarily found in the branches, plant pathogens (29.12%) are primarily found in the lower trunk, and saprotrophs (67.88%) are primarily found in the upper trunk of disease trees. Pines’ immunity is being eroded due to an increase in the quantity and types of diseases. PICRUSt2 research revealed that NADH or NADPH, as well as carbon-nitrogen bonds, were more abundant in healthy pines, but acid anhydrides and transferring phosphorus-containing groups were more abundant in infected pines. The shift in resin secretion lowers the tree’s potential and encourages pine wilt and mortality. In total, PWN may have disrupted the microbiological ecology and worked with the community to hasten the demise of pines.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference62 articles.

1. Futai: pine wood nematode, Bursaphelenchus xylophilus. Annu Rev Phytopathol. 2013,51(−):61–83.

2. Vicente C, Espada M, Vieira P, Mota M. Pine wilt disease: a threat to European forestry. Eur J Plant Pathol. 2012;133(1):497.

3. Li Y, Meng F, Deng X, Wang X, Feng Y, Zhang W, et al. Comparative transcriptome analysis of the pinewood nematode Bursaphelenchus xylophilus reveals the molecular mechanism underlying its defense response to host-derived -pinene. Int J Mol Sci. 2019;20(4):911.

4. Kojima K, Kamijyo A, Masumori M, Sasaki S. Cellulase activities of pine-wood nematode isolates with different virulences. J Japanese Forestry Soc. 1994;76(3):258–62.

5. Niu Q, Zhang L, Chu X, Du F, Feng W, Hui F, et al. Screening and identifying cellulose degrading bacteria associated with Bursaphelenchus xylophilus and cloning corresponding genes. Wei sheng wu xue bao = Acta microbiologica Sinica. 2012;52(11):1408–14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3