Antibacterial effect of silver nanorings

Author:

González-Fernández Sara,Lozano-Iturbe Víctor,García Beatriz,Andrés Luis J.,Menéndez Mª. Fe,Rodríguez David,Vazquez Fernando,Martín Carla,Quirós Luis M.ORCID

Abstract

Abstract Background The emergence and expansion of antibiotic resistance makes it necessary to have alternative anti-infective agents, among which silver nanoparticles (AgNPs) display especially interesting properties. AgNPs carry out their antibacterial action through various molecular mechanisms, and the magnitude of the observed effect is dependent on multiple, not fully understood, aspects, particle shape being one of the most important. In this article, we conduct a study of the antibacterial effect of a recently described type of AgNP: silver nanorings (AgNRs), making comparisons with other alternative types of AgNP synthesized in parallel using the same methodology. Results When they act on planktonic forms, AgNRs produce a smaller effect on the viability of different bacteria than nanoparticles with other structures although their effect on growth is more intense over a longer period. When their action on biofilms is analyzed, AgNRs show a greater concentration-dependent effect. In both cases it was observed that the effect on inhibition depends on the microbial species, but not its Gram positive or negative nature. Growth patterns in silver-resistant Salmonella strains suggest that AgNRs work through different mechanisms to other AgNPs. The antibacterial effect is also produced to some extent by the conditioning of culture media or water by contact with AgNPs but, at least over short periods of time, this is not due to the release of Ag ions. Conclusions AgNRs constitute a new type of AgNP, whose antibacterial properties depend on their shape, and is capable of acting efficiently on both planktonic bacteria and biofilms.

Funder

Gobierno del Principado de Asturias

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3