Author:
Panah Farhad M.,Lauridsen Charlotte,Højberg Ole,Jensen Henrik Elvang,Nielsen Tina Skau
Abstract
Abstract
Background
In the pig production, diarrhea can occur during different growth stages including the period 4–16 weeks post weaning, during which a diarrheal outbreak also termed as colitis-complex diarrhea (CCD) can occur and it is distinct from post-weaning diarrhea (1–2 weeks post weaning). We hypothesized that CCD in growing pigs is associated with changes in colonic microbiota composition and fermentation patterns, and the aim of the present observational study was to identify changes in digesta-associated bacteria (DAB) and mucus-associated bacteria (MAB) in the colon of growing pigs with and without diarrhea. A total number of 30 pigs (8, 11, and 12 weeks of age) were selected; 20 showed clinical signs of diarrhea and 10 appeared healthy. Based on histopathological examination of colonic tissues, 21 pigs were selected for further studies and classified as follows: without diarrhea, no colon inflammation (NoDiar; n = 5), with diarrhea, without colonic inflammation (DiarNoInfl; n = 4), and with diarrhea, with colonic inflammation (DiarInfl; n = 12). Composition (based on 16S rRNA gene amplicon sequencing) and fermentation pattern (short-chain fatty acids; SCFA profile) of the DAB and MAB communities were characterized.
Results
The DAB showed higher alpha diversity compared to MAB in all pigs, and both DAB and MAB showed lowest alpha diversity in the DiarNoInfl group. Beta diversity was significantly different between DAB and MAB as well as between diarrheal groups in both DAB and MAB. Compared to NoDiar, DiarInfl showed increased abundance of various taxa, incl. certain pathogens, in both digesta and mucus, as well as decreased digesta butyrate concentration. However, DiarNoInfl showed reduced abundance of different genera (mainly Firmicutes) compared to NoDiar, but still lower butyrate concentration.
Conclusion
Diversity and composition of MAB and DAB changed in diarrheal groups depending on presence/absence of colonic inflammation. We also suggest that DiarNoInfl group was at the earlier stage of diarrhea compared with DiarInfl, with a link to dysbiosis of colonic bacterial composition as well as reduced butyrate concentration, which plays a pivotal role in gut health. This could have led to diarrhea with inflammation due to a dysbiosis, associated with an increase in e.g., Escherichia-Shigella (Proteobacteria), Helicobacter (Campylobacterota), and Bifidobacterium (Actinobacteriota), which may tolerate or utilize oxygen and cause epithelial hypoxia and inflammation. The increased consumption of oxygen in epithelial mucosal layer by infiltrated neutrophils may also have added up to this hypoxia. Overall, the results confirmed that changes in DAB and MAB were associated with CCD and reduced butyrate concentration in digesta. Moreover, DAB might suffice for future community-based studies of CCD.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology