Abstract
Abstract
Background
Some strains of Bacteroides fragilis species are associated with diarrhea as a result of enterotoxin production (bft or fragilysin). Fragilysin is activated by C11 protease (fpn) and together with C10 protease (bfp) play a significant role in its invasiveness. The objectives of this study were to investigate the proportion of clinical isolates from extra-intestinal sources that are toxin producers and characterize the genes mediating toxin production. Clinical isolates submitted to our reference laboratory over the last 13 years were screened for toxin production using PCR technique. All stool isolates were excluded. The isolates were tested for their susceptibility to 8 antimicrobial agents by E test. Carbapenem resistance gene cfiA was detected by PCR.
Results
A total of 421 B. fragilis isolates were viable. Out of these, bft was detected in 210 (49.9%) isolates. Of the 210 bft-positive isolates, 171 (81.4%), 33 (15.7%) and 6 (2.8%) harbored bft-1, bft-2, and bft-3 genes, respectively. Twenty (9.5%) of the bft-positive strains originated from bloodstream infections. Twenty-five, 20 and 9 strains harbored bfp-1, bfp-2 and bfp-3 gene, respectively. Two, 3, 4 bfp isotypes were detected simultaneously in some of strains. The resistance rates against amoxicillin-clavulanic acid was 32%, clindamycin 62%, cefoxitin 26%, imipenem 11%, meropenem 17%, metronidazole 4%, piperacillin 61% and tigecycline 14%. A chromosomally located cfiA gene that encode metallo-β-lactamase was identified in only 34 isolates (16.2%).
Conclusions
The prevalence of enterotoxin-producing B. fragilis was high among the extra-intestinal isolates. Metronidazole was the most active agent against all isolates. There was no statistically significance difference between resistance rates among bft-positive and bft-negative isolates except for clindamycin.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference38 articles.
1. Garrett WS, Onderdonk AB. B. Bacteroides, Prevotella, Porphyromonas and Fusobacterium species (and other medically important anaerobic gram-negative bacilli). In: Mandell GL, Benett JE, Dolin R, editors. Mandell, Douglas and Bennett’s principles and practice of infectious diseases. 8th ed. New York: Churchill Livingston; 2015. p. 2773–80.
2. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803. https://doi.org/10.3748/wjg.%20v21.i29.8787.
3. Myers LL, Firehammer BD, Shoop DS, Border MM. Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immunol. 1984;44(2):241–4.
4. Sack RB, Myers LL, Almeido-Hill J, Shoop DS, Bradbury WC, Reid R, et al. Enterotoxigenic Bacteroides fragilis: epidemiologic studies of its role as a human diarrhoeal pathogen. J Diarrhoeal Dis Res. 1992;10(1):4–9.
5. Akpinar M, Aktaş E, Cömert F, Külah C, Sümbüloğlu V. Evaluation of the prevalence of enterotoxigenic Bacteroides fragilis and the distribution bft gene subtypes in patients with diarrhea. Anaerobe. 2010;16(5):505–9. https://doi.org/10.1016/j.anaerobe.2010.08.002.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献