Plant growth promotion and differential expression of defense genes in chilli pepper against Colletotrichum truncatum induced by Trichoderma asperellum and T. harzianum

Author:

Yadav Mukesh,Divyanshu Kumari,Dubey Manish Kumar,Rai Ashutosh,Kumar Sunil,Tripathi Yashoda Nandan,Shukla Vaishali,Upadhyay Ram Sanmukh

Abstract

Abstract Background Trichoderma asperellum and Tharzianum were assessed in this study as a potential biological control against Colletotrichum truncatum. C. truncatum is a hemibiotrophic fungus that causes anthracnose disease in chilli thereby affecting plant growth and fruit yield. Scanning electron microscope (SEM) technique showed the beneficial interaction between chilli root-Trichoderma spp. inducing the plant growth promotion, mechanical barrier, and defense network under C. truncatum challenged conditions. Methods Seeds bio-primed with T. asperellum, T. harzianum, and T. asperellum + T. harzianum promoted the plant growth parameters and strengthening of physical barrier via lignification on the wall of vascular tissues. Seed primed with bioagents were used for exploring the molecular mechanism of defense response in pepper against anthracnose to assess the temporal expression of six defense genes in the Surajmukhi variety of Capsicum annuum. QRT-PCR demonstrated induction of defense responsive genes in chilli pepper bioprimed with Trichoderma spp. such as plant defensin 1.2 (CaPDF1.2), superoxide dismutase (SOD), ascorbate peroxidase (APx), guaiacol peroxidase (GPx), pathogenesis related proteins PR-2 and PR-5. Results The results showed that bioprimed seeds were assessed for T. asperellum, T. harzianum, and T. asperellum + T. harzianum-chilli root colonization interaction under in vivo conditions. The results of the scanning electron microscope revealed that T. asperellum, T. harzianum and T. asperellum + T. harzianum interact with chilli roots directly via the development of plant-Trichoderma interaction system. Seeds bio-primed with bioagents promoted the plant growth parameters, fresh and dry weight of shoot and root, plant height, leaf area index, number of leaves, stem diameter and strengthening of physical barrier via lignification on the wall of vascular tissues and expression of six defense related genes in pepper against anthracnose. Conclusions Application of T. asperellum and T. harzianum and in combination of treatments enhanced the plant growth. Further, as seeds bioprimed with T. asperellum, T. harzianum and in combination with treatment of T. asperellum + T. harzianum induced the strengthening of the cell wall by lignification and expression of six defense related genes CaPDF1.2, SOD, APx, GPx, PR-2 and PR-5 in pepper against C. truncatum. Our study contributed for better disease management through biopriming with T. asperellum, T. harzianum and T. asperellum + T. harzianum. The biopriming possess enormous potential to promote plant growth, modulate the physical barrier, and induced the defense related genes in chilli pepper against anthracnose.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3