Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa

Author:

Moretto Jéssica Aparecida SilvaORCID,de Freitas Paloma Nathane NunesORCID,de Almeida Éryka CostaORCID,Altarugio Lucas MiguelORCID,da Silva Simone Vieira,de Fátima Fiore MarliORCID,Pinto ErnaniORCID

Abstract

Abstract Background Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds β-cyclocitral and β-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01—non-producing and LTPNA 08—toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of β-ionone in both cultures. Results The results showed that β-cyclocitral and β-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of β-cyclocitral and β-ionone in normal culture conditions. It was observed that the β-cyclocitral concentration was higher than β-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more β-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more β-ionone, mainly at the initial times. In addition, the experiment results with the external addition of β-ionone in the cultures showed that the strain LTPNA 01 produced more β-cyclocitral in control conditions than in treatment. Nonetheless, β-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of β-ionone may favor the production of these compounds and inhibit the production of β-cyclocitral. Conclusion Our results showed that some abiotic factors, such as different light intensities and external application of β-ionone, can be triggers that lead to the production of VOCs.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3