Author:
Soliman Rabab M.,Othman Badawi A.,Shoman Sahar A.,Azzam Mohamed I.,Gado Marwa M.
Abstract
AbstractIn areas with limited water resources, the reuse of treated drainage water for non-potable purposes is increasingly recognised as a valuable and sustainable water resource. Numerous pathogenic bacteria found in drainage water have a detrimental impact on public health. The emergence of antibiotic-resistant bacteria and the current worldwide delay in the production of new antibiotics may make the issue of this microbial water pollution even more challenging. This challenge aided the resumption of phage treatment to address this alarming issue. In this study, strains of Escherichia coli and Pseudomonas aeruginosa and their phages were isolated from drainage and surface water from Bahr El-Baqar and El-Manzala Lake in Damietta governorate, Egypt. Bacterial strains were identified by microscopical and biochemical examinations which were confirmed by 16 S rDNA sequencing. The susceptibility of these bacteria to several antibiotics revealed that most of the isolates had multiple antibiotic resistances (MAR). The calculated MAR index values (> 0.25) categorized study sites as potentially hazardous to health. Lytic bacteriophages against these multidrug-resistant strains of E. coli and P. aeruginosa were isolated and characterized. The isolated phages were found to be pH and heat stable and were all members of the Caudovirales order as recognized by the electron microscope. They infect 88.9% of E. coli strains and 100% of P. aeruginosa strains examined. Under laboratory conditions, the use of a phage cocktail resulted in a considerable reduction in bacterial growth. The removal efficiency (%) for E. coli and P. aeruginosa colonies increased with time and maximized at 24 h revealing a nearly 100% reduction after incubation with the phage mixture. The study candidates new phages for detecting and controlling other bacterial pathogens of public health concern to limit water pollution and maintain adequate hygiene.
Publisher
Springer Science and Business Media LLC
Subject
Microbiology (medical),Microbiology
Reference36 articles.
1. Aboulfotoh AM. Chemical enhancement of bahr el baqar drain in Egypt using alum, ferric chloride, cement. J. Mater. Environ. Sci. 2021; 12:1036–1045
2. Fouad HA, Hefny RM, Kamel AM, Liethy MAE, Hemdan BA. Assessment of biological augmentation technology of hazardous pollutants existing in drainage water in Bahr El-Baqar drain, Egypt. Egypt J Chem. 2020;63(7):2551–63.
3. Raslan AM, Riad PH, Hagras MA. 1D hydraulic modelling of Bahr El-Baqar new channel for northwest Sinai reclamation project, Egypt. Ain Shams Engineering Journal. 2020;11:971–82.
4. Troeger CE, Khalil IA, Blacker BF, Biehl MH, Albertson SB, Zimsen SRM, Rao PC, Abate D, Admasie A, Ahmadi A et al. Quantifying risks and interventions that have affected the burden of lower respiratory infections among children younger than 5 years: an analysis for the Global Burden of Disease Study 2017. Lancet. Infect. Dis 2020;(1):37–59 https://doi.org/10.1016/S1473-3099(19)30401-3.
5. Azzam IM, Safaa M, Ezzat MS, Othman AO, El-Dougdoug AK. Antibiotics resistance phenomenon and virulence ability in bacteriafrom water environment. Water Sci. 2017;31:109–21.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献