Comparison of low-concentration carbon dioxide-enriched and tap water immersion on body temperature after passive heating

Author:

Hayashi KeijiORCID

Abstract

Abstract Background Because carbon dioxide (CO2)-enriched water causes cutaneous vasodilation, immersion in CO2-enriched water facilitates heat transfer from the body to the water or from the water to the body. Consequently, immersion in CO2-enriched water raises or reduces body temperature faster than immersion in fresh water. However, it takes time to dissolve CO2 in tap water and because the dissolved CO2 concentration decreases over time, the actual CO2 concentration is likely lower than the stated target concentration. However, it is unclear whether water containing a lower CO2 concentration would also cool the body faster than fresh water after body temperature had been increased. Methods Ten healthy males (mean age = 20 ± 1 years) participated in the study. Participants were first immersed for 15 min in a tap water bath at 40 °C to raise body temperature. They then moved to a tap water or CO2-enriched water bath at 30 °C to reduce body temperature. The CO2 concentration was set at 500 ppm. The present study measured cooling time and cooling rate (slope of the regression line relating auditory canal temperature (Tac) to cooling time) to assess the cooling effect of CO2-enriched water immersion. Results Immersion in 40 °C tap water caused Tac to rise 0.64 ± 0.25 °C in the tap water session and 0.62 ± 0.27 °C in the CO2-enriched water session (P > 0.05). During the 30 °C water immersion, Tac declined to the baseline within 13 ± 6 min in tap water and 10 ± 6 min in CO2-enriched water (P > 0.05). Cooling rates were 0.08 ± 0.06 °C/min in tap water and 0.08 ± 0.04 °C/min in CO2-enriched water (P > 0.05). Conclusions CO2-enriched water containing 500 ppm CO2 did not cool faster than tap water immersion. This suggests that when the water temperature is 30 °C, a CO2 concentration of 500 ppm is insufficient to obtain the advantageous cooling effect during water immersion after body temperature has been increased.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Anthropology,Orthopedics and Sports Medicine,Physiology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3