Abstract
AbstractApplying human biological evolution to solve topical problems of medicine and preventive cardiology was inspired by the realization of the need for clinical and experimental studies of biological (evolutionary) prerequisites in the occurrence of a pathology. Although it has been stated that there is a need to provide a full biological understanding of features, including those that increase an animal’s vulnerability to diseases, unfortunately, in this regard, erectile and associated adaptations to the Earth’s gravity in their physiological and pathological manifestations have not been considered. At the same time, it should be noted that humans, unlike other animal species, have the greatest vulnerability of the cardiovascular system (CVS). The latter is associated with fundamental differences in the functioning and regulation of the CVS by the influence of gravity on blood circulation in humans as upright creatures. Based on a review of comparative physiological, ontogenetic, and clinical studies from an evolutionary perspective, the idea of adaptation to the Earth’s gravity when walking upright in humans is justified as an anthropogenic basis for the physiology and pathology of the cardiovascular system and hemodynamic support systems (physio-anthropology and pathological anthropology).
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Anthropology,Orthopedics and Sports Medicine,Physiology,Human Factors and Ergonomics
Reference69 articles.
1. Hinghofer-Szalkay H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur J Appl Physiol. 2011;111(2):163–74. https://doi.org/10.1007/s00421-010-1646-9.
2. Belkaniya GS, Dilenyan LR, Bagrij AS, Ryzhakov DI, Puhal'skaya LG. Antropofiziologicheskij podhod v diagnosticheskoj ocenke sostoyaniya serdechno-sosudistoj sistemy [Anthropologically approach in the diagnostic evaluation of the cardiovascular system]. Medical almanac. 2013;4:108–14. (In Russian).
3. Pochet TF, Pirotton MJ, Gerard PL. Isolation of the physiological regulation component of the arterial pressure time variation after postural stresses in by a model of the gravitational and arterial kinking effects. Physiologist. 1993;36(1 Suppl):S162–3.
4. Lillywhite HB. Evolution of cardiovascular adaptation to gravity. J Gravit Physiol. 1995;2(1):1–4.
5. Conboy EE, Fogelman AE, Sauder CL, Ray CA. Endurance training reduces renal vasoconstriction to orthostatic stress. Am. J. Physiol. Renal. Physiol. 2010;298(2):F279–84. https://doi.org/10.1152/ajprenal.00447.2009.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献