Hypoxic-induced resting ventilatory and circulatory responses under multistep hypoxia is related to decline in peak aerobic capacity in hypoxia

Author:

Horiuchi MasahiroORCID,Dobashi Shohei,Kiuchi Masataka,Fukuoka Yoshiyuki,Koyama Katsuhiro

Abstract

Abstract Background Several factors have been shown to contribute to hypoxic-induced declined in aerobic capacity. In the present study, we investigated the effects of resting hypoxic ventilatory and cardiac responses (HVR and HCR) on hypoxic-induced declines in peak oxygen uptake ($$\dot{\mathrm V}$$ V ˙ O2peak). Methods Peak oxygen uptakes was measured in normobaric normoxia (room air) and hypoxia (14.1% O2) for 10 young healthy men. The resting HVR and HCR were evaluated at multiple steps of hypoxia (1 h at each of 21, 18, 15 and 12% O2). Arterial desaturation (ΔSaO2) was calculate by the difference between SaO2 at normoxia—at each level of hypoxia (%). HVR was calculate by differences in pulmonary ventilation between normoxia and each level of hypoxia against ΔSaO2 (L min−1 %−1 kg−1). Similarly, HCR was calculated by differences in heart rate between normoxia and each level of hypoxia against ΔSaO2 (beats min−1 %−1). Results $$\dot{\mathrm V}$$ V ˙ O2peak significantly decreased in hypoxia by 21% on average (P < 0.001). HVR was not associated with changes in $$\dot{\mathrm V}$$ V ˙ O2peak. ΔSaO2 from normoxia to 18% or 15% O2 and HCR between normoxia and 12% O2 were associated with changes in $$\dot{\mathrm V}$$ V ˙ O2peak (P < 0.05, respectively). The most optimal model using multiple linear regression analysis found that ΔHCR at 12% O2 and ΔSaO2 at 15% O2 were explanatory variables (adjusted R2 = 0.580, P = 0.02). Conclusion These results suggest that arterial desaturation at moderate hypoxia and heart rate responses at severe hypoxia may account for hypoxic-induced declines in peak aerobic capacity, but ventilatory responses may be unrelated.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Anthropology,Orthopedics and Sports Medicine,Physiology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3