Abstract
AbstractThe doubly labeled water (DLW, 2H218O) method for calculating the total production of CO2 over several days is currently considered to be the most accurate technique for the measurement of total energy expenditure (TEE), and the results obtained using this method have been used to review energy requirements. Presently, there is limited data available on TEE in Japanese children. The objective of this study was to assess the TEE in pre-school Japanese children using the DLW method. We used a cross-sectional population of 140 children (69 boys and 71 girls) aged 3–6 years. TEE was measured using the DLW method over 8 days under free-living conditions. The average weights (kg) of the boys and girls were 15.6 ± 2.5 and 15.0 ± 2.1 for the 3–4 years old and 19.8 ± 3.8 and 19.6 ± 2.7 for the 5–6 years old, respectively. The corresponding TEE (kcal/day) was 1260.9 ± 357.8 and 1265.2 ± 408.0, and 1682.3 ± 489.0 and 1693.1 ± 473.3, respectively, showing a significant difference with respect to age. Furthermore, TEE per body weight (kcal/kg/day) was 83.2 ± 29.2 and 84.9 ± 26.6, and 85.4 ± 23.2 and 86.7 ± 22.6, respectively. However, when TEE was adjusted for body weight or fat-free mass, there were no age or sex differences. We conclude that in Japanese children, TEE in those aged 3–4 years was similar to the current Ministry of Health recommendations. However, TEE in children aged 5–6 years was slightly higher than the recommendations. Based on these findings, the present results obtained from a large number of participants will provide valuable reference data for Japanese children.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Anthropology,Orthopedics and Sports Medicine,Physiology,Human Factors and Ergonomics
Reference51 articles.
1. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17:95–107. https://doi.org/10.1111/obr.12334.
2. Guo S, Chumlea WC, Roche AF, Gardner JD, Siervogel RM. The predictive value of childhood body mass index values for overweight at 35y. Am J Clin Nurt. 1994;59:810–9. https://doi.org/10.1093/ajcn/59.4.810.
3. UNICEF/WHO/World Bank. Levels and trends in child malnutrition: key findings of the 2019 edition. World Health Organization. 2019:1–16. https://www.unicef.org/media/60626/file/Joint-malnutrition-estimates-2019.pdf. Accessed 3 Feb 2022.
4. Rosiek A, Maciejewska FN, Leksowski K, Rosiek-Kryszewska A, Leksowski L. Effect of television on obesity and excess of weight and consequences of health. Int J Environ Res Public Health. 2015;12:9408–26. https://doi.org/10.3390/ijerph120809408.
5. Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, Rowland T, Trost S, Trudeau F. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7. https://doi.org/10.1016/j.jpeds.2005.01.055.