Author:
Wang Haiyan,Lin Xue,Pu Xiaoyan
Abstract
Abstract
Background
The lung is an important target organ for hypoxia treatment, and hypoxia can induce several diseases in the body.
Methods
We performed transcriptome sequencing for the lungs of rats exposed to plateau hypoxia at 0 day and 28 days. Sequencing libraries were constructed, and enrichment analysis of the differentially expressed genes (DEGs) was implemented using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, experimental validation was executed by quantitative real-time PCR (qRT-PCR) and western blot.
Results
The results showed that the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway that was involved in immunity may play a crucial function in lung injury caused by plateau hypoxia. And the expressions of NOD1, NOD2, IL-1β, TNF-α, IL-6, and IL-18 were higher at 28 days of exposure to plateau hypoxia than that at 0 day. Similarly, CARD9, MYD88, p38 MAPK, and NF-κB p65, which are related to the NF-κB and MAPK signaling pathways, also demonstrated increased expression at 28 days exposure to plateau hypoxia than at 0 day.
Conclusions
Our study suggested that the NFκBp65 and p38 MAPK signaling pathways may be activated in the lungs of rats during plateau hypoxia. Upregulated expression of NFκBp65 and p38 MAPK can promote the transcription of downstream inflammatory factors, thereby aggravating the occurrence and development of lung tissue remodeling.
Funder
The Second Tibetan Plateau Scientific Expedition and Research Program
The Key Laboratory of Medicinal Animal and Plant resources of the Qinghai-Tibetan Plateau
National Natural Science Foundation of China
Department of Science and Technology of Qinghai Province
National Students’ platform for innovation and enterpreneurship training Program
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Public Health, Environmental and Occupational Health,Anthropology,Orthopedics and Sports Medicine,Physiology,Human Factors and Ergonomics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献