Author:
Bollmann Stella,Groll Andreas,Havranek Michael M.
Abstract
Abstract
Background
Automated feature selection methods such as the Least Absolute Shrinkage and Selection Operator (LASSO) have recently gained importance in the prediction of quality-related outcomes as well as the risk-adjustment of quality indicators in healthcare. The methods that have been used so far, however, do not account for the fact that patient data are typically nested within hospitals.
Methods
Therefore, we aimed to demonstrate how to account for the multilevel structure of hospital data with LASSO and compare the results of this procedure with a LASSO variant that ignores the multilevel structure of the data. We used three different data sets (from acute myocardial infarcation, COPD, and stroke patients) with two dependent variables (one numeric and one binary), on which different LASSO variants with and without consideration of the nested data structure were applied. Using a 20-fold sub-sampling procedure, we tested the predictive performance of the different LASSO variants and examined differences in variable importance.
Results
For the metric dependent variable Duration Stay, we found that inserting hospitals led to better predictions, whereas for the binary variable Mortality, all methods performed equally well. However, in some instances, the variable importances differed greatly between the methods.
Conclusion
We showed that it is possible to take the multilevel structure of data into account in automated predictor selection and that this leads, at least partly, to better predictive performance. From the perspective of variable importance, including the multilevel structure is crucial to select predictors in an unbiased way under consideration of the structural differences between hospitals.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference51 articles.
1. Akaike H. Information theory and an extension of the maximum likelihood principle. In: N PB, Csáki F, editors. 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971. Budapest: Akadémiai Kiadó; 1973. p. 267–281.
2. Austin PC, Alte DA. Comparing hierarchical modeling with traditional logistic regression analysis among patients hospitalized with acute myocardial infarction: should we be analyzing cardiovascular outcomes data differently? Am Heart J. 2003;145(1):27–35.
3. Bertsimas D, Bjarnadóttir MV, Kane MA, Kryder JC, Pandey R, Vempala S, et al. Algorithmic prediction of health-care costs. Oper Res. 2008;56(6):1382–92.
4. Boakye EA, Osazuwa-Peters N, Chen B, Cai M, Tobo BB, Challapalli SD, et al. Multilevel associations between patient-and hospital-level factors and in-hospital mortality among hospitalized patients with head and neck cancer. JAMA Otolaryngol Head Neck Surg. 2020;146(5):444–54.
5. Bottle A, Faitna P, Aylin PP. Patient-level and hospital-level variation and related time trends in COVID-19 case fatality rates during the first pandemic wave in England: multilevel modelling analysis of routine data. BMJ Qual Saf. 2022;31(3):211–20.