Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis

Author:

Spineli Loukia M.ORCID,Kalyvas Chrysostomos

Abstract

Abstract Background Missing participant outcome data (MOD) are ubiquitous in systematic reviews with network meta-analysis (NMA) as they invade from the inclusion of clinical trials with reported participant losses. There are available strategies to address aggregate MOD, and in particular binary MOD, while considering the missing at random (MAR) assumption as a starting point. Little is known about their performance though regarding the meta-analytic parameters of a random-effects model for aggregate binary outcome data as obtained from trial-reports (i.e. the number of events and number of MOD out of the total randomised per arm). Methods We used four strategies to handle binary MOD under MAR and we classified these strategies to those modelling versus excluding/imputing MOD and to those accounting for versus ignoring uncertainty about MAR. We investigated the performance of these strategies in terms of core NMA estimates by performing both an empirical and simulation study using random-effects NMA based on electrical network theory. We used Bland-Altman plots to illustrate the agreement between the compared strategies, and we considered the mean bias, coverage probability and width of the confidence interval to be the frequentist measures of performance. Results Modelling MOD under MAR agreed with exclusion and imputation under MAR in terms of estimated log odds ratios and inconsistency factor, whereas accountability or not of the uncertainty regarding MOD affected intervention hierarchy and precision around the NMA estimates: strategies that ignore uncertainty about MOD led to more precise NMA estimates, and increased between-trial variance. All strategies showed good performance for low MOD (<5%), consistent evidence and low between-trial variance, whereas performance was compromised for large informative MOD (> 20%), inconsistent evidence and substantial between-trial variance, especially for strategies that ignore uncertainty due to MOD. Conclusions The analysts should avoid applying strategies that manipulate MOD before analysis (i.e. exclusion and imputation) as they implicate the inferences negatively. Modelling MOD, on the other hand, via a pattern-mixture model to propagate the uncertainty about MAR assumption constitutes both conceptually and statistically proper strategy to address MOD in a systematic review.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3